scholarly journals Features of the geological structure and oil and gas content of the shelves of the Far Eastern Seas

Georesursy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 26-34
Author(s):  
Antonina V. Stoupakova ◽  
Anna A. Suslova ◽  
Andrey A. Knipper ◽  
Evgeniya E. Karnyushina ◽  
Oleg V. Krylov ◽  
...  

Russian shelf is one of the most important areas for hydrocarbon forecast and mineral resources development. The main features of the geological structure of the shelves of the Far Eastern seas are discussed in the paper. The most promising basins on the Okhotsk shelf are located around Sakhalin island where the majority of the hydrocarbon fields have been discovered. The Bering and the Japan shelf has not been sufficiently studied by now but nevertheless has high oil and gas potential. The main focus is made on the geological and geophysical data, licensing, lithological and stratigraphic structure, seismic interpretation, oil and gas fields distribution. The structural-tectonic zoning of the entire Far Eastern region has been done in order to identify zones of deep troughs with thick sedimentary cover to predict the sources of hydrocarbon generation.

Author(s):  
С.А. Мамаев ◽  
А.Р. Юсупов ◽  
А.С. Мамаев ◽  
З.А. Юсупов

В данной статье даны особенности геологического строения района газопроявления «Цущар» в Кулинском районе на отложениях среднеюрского возраста, предлагается геолого-структурная схема возможного формирования залежи нефти и газа. Незначительные проявления газоносности, связанные обычно с минеральными источниками и подчиненные мощной толще юрских сланцев, развитых на значительных площадях нагорного Дагестана, начали обращать на себя внимание с 1931 г., в связи с поисками месторождений легких редких газов. Анализы газов показывают повышенное содержание легких редких газов в целом ряде месторождений нагорного Дагестана. Кроме группы месторождений Южного Дагестана известен пока только один выход горючего газа в Центральном Дагестане – Кулинском районе. На него указывает в своем рукописном отчете Дагестанскому Совнархозу геолог Н. М. Леднев. Этот выход подчинен юрским сланцам, связан с нарушениями неотектонического характера, образованными в результате сейсмической активизации региона. Цель исследования. Целью наших исследований является обоснование перспектив газоносности Горного Дагестана. На изучаемой территории отмечается наличие неправильных куполовидных складок с неожиданными направлениями их осей, пересекающими основное направление складчатости, частичными местными уклонениями в залегании пластов. Методы исследования. Основными методами исследования при изучении перспектив газоносности Горного Дагестана являлись геолого-структурный, стратиграфический, морфологический, тектонический и дешифрирование аэрофотоснимков. Результаты исследования. По сравнению с Предгорным Дагестаном и Прикумским районом, Горный Дагестан был подвержен более интенсивным геотектоническим движениям, неоднократно подвергался складчатости, испытал инверсию, со значительно большей амплитудой, что привело к усиленной денудации, развитию трещиноватости и разрывов, метаморфизму пород и органических образований. Все это отрицательно влияло на сохранение нефти и газа. Можно предполагать, что многие залежи, сформировавшиеся при прохождении продуцирующими толщами главной фазы нефтеобразования, были разрушены в периоды активизации тектонической деятельности на рубеже юры и мела, мела и палеогена. В дальнейшем шла генерация, преимущественно, газообразных углеводородов, которые при особенно благоприятных условиях могли сохраниться до настоящего времени. По результатам исследований можно утверждать, что газовое проявление Цущар могло проявиться в 1622, 1652 гг. в результате сильных землетрясений, эпицентр которых располагался в пределахисследуемого района This article describes the features of the geological structure of the Tsushar gas show area in the Kulinsky region on the Middle Jurassic deposits, and proposes a geological-structural diagram of the possible formation of oil and gas deposits. Minor manifestations of gas content, usually associated with mineral springs and subordinate to a thick stratum of Jurassic shales, developed over large areas of highland Dagestan, began to attract attention from 1931, in connection with the search for deposits of light rare gases. Gas analyzes show an increased content of light rare gases in a number of fields in highland Dagestan. In addition to the group of fields in Southern Dagestan, only one outlet of combustible gas in Central Dagestan is known – the Kulinsky region. It is pointed out in his handwritten report to the Dagestan Economic Council by the geologist N. M. Lednev. This outlet is subordinate to the Jurassic shale and is associated with neotectonic disturbances formed as a result of seismic activation of the region. Aim. The purpose of our research is to substantiate the prospects for gas content in Gorny Dagestan. In the study area, there are irregular dome-shaped folds with unexpected directions of their axes crossing the main direction of folding, partial local deviations in bedding. Methods. The main research methods in the study of the prospects for the gas content of Mountainous Dagestan were geological-structural, stratigraphic, morphological, tectonic and additional aerial photographs. Research results. Compared to Piedmont Dagestan and Prikumskiy region, Gorny Dagestan was subject to more intense geotectonic movements, repeatedly underwent folding, experienced inversion, with a much higher amplitude, which led to increased denudation, the development of fracturing and fractures, metamorphism of rocks and organic formations. All of this negatively affected the conservation of oil and gas. It can be assumed that many deposits, formed during the passage of the producing strata of the main phase of oil formation, were destroyed during periods of intensified tectonic activity at the boundary between the Jurassic and Cretaceous, Cretaceous and Paleogene. In the future, there was the generation of mainly gaseous hydrocarbons, which, under especially favorable conditions, could persist to the present day. According to the research results, it can be argued that the gas manifestation of Tsushar could have manifested itself in 1622, 1652. as a result of strong earthquakes, the epicenter, which was located within the study area


2021 ◽  
Vol 43 (4) ◽  
pp. 199-216
Author(s):  
N.P. Yusubov ◽  
I.S. Guliyev

The high degree of knowledge of the upper horizons of the sedimentary cover of the Middle and South Caspian depressions, given an insufficient increase in hydrocarbon reserves, leads to the need for a detailed approach to the search for oil and gas deposits in deep-seated sediments (over 6 km). During the geological interpretation of new highly informative seismic data, as well as data of deep drilling and petrological core studies, there were revealed obvious shortcomings in the concepts of the origin and evolution of the Middle and South Caspian depressions. These ideas misinterpret evolution, especially the South Caspian Basin, which is characterized by a number of unique features: very thick sedimentary cover (up to 22 km), extremely high sedimentation rate, low heat flow and reservoir temperatures, abnormally high pore and reservoir pressures, high clay content of the section, etc. The main purpose of the study was to elucidate the regional structure and features of the dissection of the sedimentary cover of the Middle and South Caspian depressions, the conditions of occurrence and distribution of facies and thicknesses of individual complexes of deposits. The paper analyzes the results of some previous studies of the geological structure of the Middle and South Caspian depressions based on the data of deep seismic sounding, seismological and gravimetric observations. We consider the main conclusions of these studies, about the geological structure of the sedimentary complex of the region’s, very outdated and subject to revision. The results of seismic stratigraphic analysis of seismic data allowed the authors to identify new data about the tectonic structure and express a completely different point of view regarding the structure of the sedimentary cover in the region. The work also touches on the issue associated with the tectonics of the region and the alleged subduction zone here.


2019 ◽  
Vol 10 (2) ◽  
pp. 459-470
Author(s):  
V. A. Kontorovich ◽  
В. V. Lunev ◽  
V. V. Lapkovsky

The article discusses the geological structure, oil‐and‐gas‐bearing capacities and salt tectogenesis of the Anabar‐Khatanga saddle located on the Laptev Sea shore. In the study area, the platform sediments are represented by the 14‐45 km thick Neoproterozoic‐Mesozoic sedimentary complexes. The regional cross‐sections show the early and middle Devonian salt‐bearing strata and associated salt domes in the sedimentary cover, which may be indicative of potential hydrocarbon‐containing structures. Diapirs reaching the ground surface can be associated with structures capable of trapping hydrocarbons, and typical anticline structures can occur above the domes buried beneath the sediments. In our study, we used the algorithms and software packages developed by A.A. Trofimuk Institute of Petroleum Geology and Geophysics (IPGG SB RAS). Taking into account the structural geological features of the study area, we conducted numerical simulation of the formation of salt dome structures. According to the numerical models, contrasting domes that reached the ground surface began to form in the early Permian and developed most intensely in the Mesozoic, and the buried diapirs developed mainly in the late Cretaceous and Cenozoic.


2021 ◽  
Vol 43 (3) ◽  
pp. 123-134
Author(s):  
T. R. Akhmedov ◽  
T. Kh. Niyazov

The article is devoted to the elucidation of the nature of the wave field recorded below the supporting-dominant seismic horizon «P» in the Middle Kura depression of Azerbaijan. A brief overview of the work carried out here is given; it is indicated that some geologists and geophysicists of our country, in our opinion, mistakenly assume that the observed wave field below the specified horizon is formed mainly by multiple reflections. Since the introduction of the common depth point method into the practice of seismic exploration, individual areas of the Middle Kura depression in Azerbaijan, including the Yevlakh-Agjabedi trough, have been repeatedly studied with varying degrees of frequency tracking. On the basis of this, a fairly large number of promising structures have been identified and mapped. But the structure of the Mesozoic, in particular the deposits of the Upper Cretaceous, still remains insufficiently studied. The study of the geological structure of the Mesozoic sediments, which are considered promising in terms of oil and gas content, is an urgent geological task; exploration work was carried out in the studied areas of the Middle Kura depression using a complex of geophysical methods at the modern technical and methodological level and new results were obtained. The constructed seismic sections show a dynamically pronounced and well-traceable seismic horizon corresponding to the Mesozoic surface and located deeper than it, relatively weak, short, discontinuous reflective boundaries that characterize the structure within the Mesozoic deposits. The studies carried out on the basis of modeling and velocity analysis made it possible to prove that the wave field in the time interval corresponding to the Mesozoic deposits owes its origin to intermittent single reflections from volcanic-carbonate deposits of the Upper Cretaceous age.


Georesursy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 21-33
Author(s):  
Vagif Kerimov ◽  
Nurdin Yandarbiev ◽  
Rustam Mustaev ◽  
Andrey Kudryashov

The article is devoted to the generation and accumulation systems in the territory of the Crimean-Caucasian segment of the Alpine folded system. An area of prolonged and stable sagging in the Mesozoic and Cenozoic – the Azov-Kuban Trough, which is a typical foreland basin – is distinguished within this segment. According to the results of geological and geochemical studies and modelling, depocentres are identified in this area, consolisated in four generative and accumulative hydrocarbon systems: Triassic-Jurassic, Cretaceous, Eocene and Maikop. Chemical-bitumenological, pyrolytic and coal petrology analysis of rock samples were carried out to assess geochemical conditions of oil and gas content in Meso-Cenozoic sediments. The modelling results made it possible to study and model the elements and processes of hydrocarbon systems in the Meso-Cenozoic in the Western Crimean-Caucasian region. It has been established that the extended catagenetic zoning is typical for these areas, which is caused by high rates of sedimentation and sagging, and large thicknesses of oil-bearing sediments in the source of oil formation, accordingly. The degree of organic matter depletion characterized the residual potential of the oil and gas source strata, was investigated. It is important for predicting and assessing the possibility of hydrocarbon generation.


2020 ◽  
Vol 1 (2) ◽  
pp. 7-19
Author(s):  
Vladimir Sergeevich PONOMAREV ◽  
◽  
Kirill Svyatoslavich IVANOV ◽  
Yuriy Viktorovich EROKHIN ◽  
◽  
...  

Relevance of the work. The Western Siberian megabasin is the main source of oil and gas in Russia. Therefore, the study of geological structure and evolution of the development of sedimentary cover rock complexes and the basement of the region is important for estimating the oil and gas potential of this vast territory. The object of this paperis the mineralogical and petro-geochemical study of volcanites from the pre-Jurassic basement of the Lakyuganskaya area (well no. 101) of the Longyugansk exploration acreage within the territory of the Nadym megadepression of the Western Siberian megabasin. Scope of work. This work can be useful when constructing geological maps of the basement of the northern part of the Western Siberian Plate. Results and conclusions. We have studied and described the mineralogy of strongly altered volcanites from the pre-Jurassic basement of the Lakyugansk area (well no. 101) of the Western Siberian Plate. According to chemical composition, the studied volcanites are classified as moderate and high potassic basalts, andesite-basalts and andesites. The rocks were subjected to significant secondary changes in the mineral composition, such as greenschist metamorphism and propylitization. Only titanomagnetite has been preserved from primary minerals in volcanites; all other minerals were subjected to changes. In general, we have determined the following minerals – albite, clinochlore, titanite, calcite, goethite, titanomagnetite (magnetite, ulvospinel), fluorapatite, and rutile. For the first time, ferroaluminoceladonite (dioctahedral mica) and three relatively rare secondary copper sulfides – spionkopite, yarrowite, and geerite – were identified and described in basalts from the basement of Western Siberia. Sulfide coppery mineralization in the studied basalts was due to overlapped propylization processes. The rocks have features of volcanites of island arcs, as well as evidence of calc-alkali and intraplate basalts. The petrological and geochemical characteristics of the studied volcanites are similar to basalts composing the Koltogorsko-Urengoysky rift of the Western Siberian Plate.


Author(s):  
V. Yu. Kerimov ◽  
Yu. V. Shcherbina ◽  
A. A. Ivanov

Introduction. To date, no unified well-established concepts have been developed regarding the oil and gas geological zoning of the Laptev Sea shelf, as well as other seas of the Eastern Arctic. Different groups of researchers define this region either as an independently promising oil and gas region [7, 8], or as a potential oil and gas basin [1].Aim. To construct spatio-temporal digital models of sedimentary basins and hydrocarbon systems for the main horizons of oil and gas source rocks. A detailed analysis of information on oil and gas content, the gas chemical study of sediments, the characteristics of the component composition and thermal regime of the Laptev sea shelf water area raises the question on the conditions for the formation and evolution of oil and gas source strata within the studied promising oil and gas province. The conducted research made it possible to study the regional trends in oil and gas content, the features of the sedimentary cover formation and the development of hydrocarbon systems in the area under study.Materials and methods. The materials of production reports obtained for individual large objects in the water area were the source of initial information. The basin analysis was based on a model developed by Equinor specialists (Somme et al., 2018) [14—17], covering the time period from the Triassic to Paleogene inclusive and taking into account the plate-tectonic reconstructions. The resulting model included four main sedimentary complexes: pre-Aptian, Apt-Upper Cretaceous, Paleogene, and Neogene-Quaternary.Results. The calculation of numerical models was carried out in two versions with different types of kerogen from the oil and gas source strata corresponding to humic and sapropel organic matter. The results obtained indicated that the key factor controlling the development of hydrocarbon systems was the sinking rate of the basins and the thickness of formed overburden complexes, as well as the geothermal field of the Laptev Sea.Conclusion. The analysis of the results obtained allowed the most promising research objects to be identified. The main foci of hydrocarbon generation in the Paleogene and Neogene complexes and the areas of the most probable accumulation were determined. Significant hydrocarbon potential is expected in the Paleogene clinoforms of the Eastern Arctic.


2019 ◽  
Vol 2 (1) ◽  
pp. 217-224
Author(s):  
Kseniya Kanakova ◽  
Mikhail Kanakov

Despite the recent increased interest of researchers in the pre-Jurassic deposits of Western Siberia, this complex of rocks still remains relatively unexplored. In this paper, we consider fields that are in close proximity to each other, but have. fundamentally different geological structure and criteria for the oil and gas content of rocks that form the top of the pre-Jurassic complex.


2021 ◽  
Vol 40 (4) ◽  
pp. 87-98
Author(s):  
P.N. Prokhorova ◽  
◽  
E.P. Razvozzhaeva ◽  
V.I. Isaev ◽  
◽  
...  

The prospects of oil and gas content of the Cretaceous-Paleogene deposits of the Middle Amur sedimentary basin within the Pereyaslavsky graben are clarified on the basis of updated data on the tectonic-stratigraphic complexes of the basin using the method of one-dimensional paleotemperature modeling. It is established that throughout the history of formation of the studied part of Pereyaslavsky graben hydrocarbon generation could occur in lower Cretaceous sediments of the Assikaevsky and Alchansky/Strelnikovsky suites. The gas generation conditions for the Assykaevsky formation are still maintained.


Author(s):  
D. D. Ismailov ◽  
S. G. Serov ◽  
R. N. Mustaev ◽  
A. V. Petrov

The results of studies of hydrocarbon systems of the Eastern and Central Ciscaucasia are shown. The research area covers part of the Scythian platform, namely, the northern side of the Terek-Caspian foredeep, the north-eastern part of the East Kuban depression, the Tersko-Kum depression and the Stavropol arch. Based on the results of the work and basin modelling of hydrocarbons generation, emigration and accumulation processes, the reconstruction of the history of oil and gas formation and oil and gas accumulation in the sedimentary cover of the region was completed. The basin modelling of hydrocarbon formation processes in Central and Eastern Ciscaucasia was carried out using the PetroMod (Schlumberger) program complex. The obtained results made it possible to determine the dynamics of organic substance transformation processes, evolution of oil and gas formation zones, time and expected paths of hydrocarbon migration and phase composition and degree of hydrocarbon saturation of the section. The model reliability was corrected by comparing the values of benchmarks (modern reservoir temperatures measured in wells, with their calculated values obtained as a result of modelling). The location of possible foci of hydrocarbon generation in the sedimentary cover, the migration paths, the phase composition of hydrocarbons, the intensity of hydrocarbon saturation within individual tectonic zones and structures were determined. It has been established that the main foci of hydrocarbon generation in the southern part of the studied region are located in the Chechen depression (Tersko-Caspian deep), on the platform part–in the zone of the Manych deep and Nogai stage.


Sign in / Sign up

Export Citation Format

Share Document