scholarly journals Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis

Oncotarget ◽  
2017 ◽  
Vol 8 (52) ◽  
pp. 90579-90604 ◽  
Author(s):  
Alexandre Vallée ◽  
Yves Lecarpentier ◽  
Rémy Guillevin ◽  
Jean-Noël Vallée
2017 ◽  
Vol 95 (3) ◽  
pp. 400-414 ◽  
Author(s):  
Hesham Farouk Hasan ◽  
Mohamed Khairy Abdel-Rafei ◽  
Shereen Mohamed Galal

Background: Liver fibrosis is one of the major complications from upper right quadrant radiotherapy. MicroRNA-17-5p (miR-17-5p) is hypothesized to act as a regulator of hepatic stellate cell (HSCs) activation by activation of the canonical Wnt–β-catenin pathway. Diosmin (Dios), a citrus bioflavonoid, is known to possess potent antioxidant, anti-inflammatory, and anti-apoptotic properties. Purpose: To explore the molecular mechanisms that underlie radiation-induced liver fibrosis, and to evaluate the possible influence of Dios on the miR-17-5p–Wnt–β-catenin signaling axis during fibrogenesis provoked by irradiation (IRR) in rats. Also, the effect of Dios on hepatic peroxisome proliferator activated receptor-γ (PPAR-γ) expression as a regulator for HSC activation was considered. Methods: We administered 100 mg·(kg body mass)–1·day–1(per oral) of Dios were administered to IRR-exposed rats (overall dose of 12 Gy on 6 fractions of 2 Gy each) for 6 successive weeks. Results: Data analysis revealed that Dios treatment mitigated oxidative stress, enhanced antioxidant defenses, alleviated hepatic inflammatory responses, abrogated pro-fibrogenic cytokines, and stimulated PPAR-γ expression. Dios treatment repressed the miR-17-5p activated Wnt–β-catenin signaling induced by IRR. Moreover, Dios treatment restored the normal hepatic architecture and reversed pathological alterations induced by IRR. Conclusion: We hypothesize that the stimulation of PPAR-γ expression and interference with miR-17-5p activated Wnt–β-catenin signaling mediates the antifibrotic properties of Dios.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Lulu Su ◽  
Yinping Dong ◽  
Yueying Wang ◽  
Yuquan Wang ◽  
Bowen Guan ◽  
...  

AbstractRadiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation in clinic with poor prognosis and limited therapeutic options. Previous results have shown that senescent cells, such as fibroblast and type II airway epithelial cell, are strongly implicated in pathology of RIPF. However, the role of senescent macrophages in the development RIPF is still unknown. In this study, we report that ionizing radiation (IR) increase cellular senescence with higher expression of senescence-associated β-galactosidase (SA-β-Gal) and senescence-specific genes (p16, p21, Bcl-2, and Bcl-xl) in irradiated bone marrow-derived monocytes/macrophages (BMMs). Besides, there’s a significant increase in the expression of pro-fibrogenic factors (TGF-β1 and Arg-1), senescence-associated secretory phenotype (SASP) proinflammatory factors (Il-1α, Il-6, and Tnf-α), SASP chemokines (Ccl2, Cxcl10, and Ccl17), and SASP matrix metalloproteinases (Mmp2, Mmp9 and Mmp12) in BMMs exposed to 10 Gy IR. In addition, the percentages of SA-β-Gal+ senescent macrophages are significantly increased in the macrophages of murine irradiated lung tissue. Moreover, robustly elevated expression of p16, SASP chemokines (Ccl2, Cxcl10, and Ccl17) and SASP matrix metalloproteinases (Mmp2, Mmp9, and Mmp12) is observed in the macrophages of irradiated lung, which might stimulate a fibrotic phenotype in pulmonary fibroblasts. In summary, irradiation can induce macrophage senescence, and increase the secretion of SASP in senescent macrophages. Our findings provide important evidence that senescent macrophages might be the target for prevention and treatment of RIPF.


2014 ◽  
Vol 16 (11) ◽  
pp. 1126-1126 ◽  
Author(s):  
Ichiro Takada ◽  
Masatomo Mihara ◽  
Miyuki Suzawa ◽  
Fumiaki Ohtake ◽  
Shinji Kobayashi ◽  
...  

2007 ◽  
Vol 97 (06) ◽  
pp. 988-997 ◽  
Author(s):  
Mihail Hristov ◽  
Denis Gümbel ◽  
Teresa Tejerina ◽  
Santiago Redondo ◽  
Christian Weber

SummaryEndothelial progenitor cells (EPCs) have been implicated in vascular repair and found to be functionally impaired in patients with diabetes. We evaluated the effects of the anti-diabetic drug pioglitazone on human EPC function and the involvement of PPAR-γ and TGF-β1. EPCs in culture were characterized at day 7 by the development of colony-forming units (CFUs) and flow cytometry assessment of differentiation marker (DiI-ac-LDL/lectin, KDR and CD31). Adhesion on fibronectin and fibrinogen in flow was analyzed as functional parameter. Treatment with pioglitazone for 72 hours increased the number of EPC-CFUs, DiI-ac-LDL+/lectin+, CD31+ and KDR+ EPCs at 1 μM but not at 10 μM. Since pioglitazone did not significantly alter proliferation and apoptosis in cultured EPCs, the increase in EPC number was most likely attributable to augmented adhesion and differentiation. Indeed, pioglitazone increased EPC adhesion in flow at 1 μM, an effect prevented by PPAR-γ and β2-integrin blockade. In contrast, pioglitazone did not promote EPC adhesion at 10 μM; however, increased adhesion became evident by co-incubation with a blocking TGF-β1 antibody. As determined by ELISA, pioglitazone induced a persistent increase in TGF-β1 secretion only at 10 μM when a significantly elevated expression of endoglin, the accessory receptor forTGF-β1, was also observed. Taken together, pioglitazone exerts biphasic effects on the function of isolated EPCs, causing a PPAR-γ-dependent stimulation at 1 μM and a TGF-β1-mediated suppression at 10 μM. These results may help to define optimal therapeutic doses of pioglitazone for improving endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document