scholarly journals Effect of moisture content on specific cutting energy consumption in Corymbia citriodora and Eucalyptus urophylla woods

2017 ◽  
Vol 45 (113) ◽  
Author(s):  
Débora Fernanda Reis Nascimento ◽  
Luiz Eduardo de Lima Melo ◽  
José Reinaldo Moreira da Silva ◽  
Paulo Fernando Trugilho ◽  
Alfredo Napoli
2016 ◽  
Vol 842 ◽  
pp. 14-18
Author(s):  
Sri Raharno ◽  
Yatna Yuwana Martawirya ◽  
Heng Rath Visith ◽  
Jeffry Aditya Cipta Wijaya

Manufacturing industries have consumed 30% of the total world energy. The main energy source used in those manufacturing industries is the electricity generated from fossil fuels such as oil, gas, and coal as a result in causing the environmental and economic issues. This paper presents an experimental study in order to get the minimum energy consumption during turning of aluminum 6010 with the conventional machine tool under dry cutting condition by optimizing the cutting parameters to contribute to those issues. An analysis of variance (ANOVA) was employed to analyze the effects and contribution of depth of cut, feed, and cutting speed on the response variable, specific cutting energy. The result of this experiment showed that the feed was the most significant factor for minimizing energy consumption followed by the cutting speed and the depth of cut. The minimum energy consumption was obtained when the highest level of cutting parameters have been used.


2013 ◽  
Vol 16 (3) ◽  
pp. 82-86 ◽  
Author(s):  
Abdullah Sessiz ◽  
Ahmet Konuralp Elicin ◽  
Resat Esgici ◽  
Gultekin Ozdemir ◽  
Ladislav Nozdrovický

Abstract The exact knowledge of olive suckers and branches cutting behaviour is one of the main parameters for optimizing the design of cutting elements in pruning machines. In this study, the cutting properties of five different varieties of the table olive, namely Halhali, Gullaki, Mavis, Belloti and Zoncuk respectively, were determined. The cutting properties were measured at three moisture content levels (17.05, 34.44, and 39.47 %) and four cross-sectional areas (12.56, 28.27, 50.26 and 78.54 mm2). The results showed that the cutting force and cutting energy requirement of olive suckers decreased with increasing moisture content in all of the olive varieties. However, these properties increased with increasing cross-sectional area. The maximum cutting force, cutting strength, cutting energy requirement and specific cutting energy of olive sucker were obtained at the Halhali variety as 869.15 N, 18.66 MPa, 4.29 J and 0.0875 J.mm-2, respectively, while the minimum cutting values were obtained at the Zoncuk variety as 619.19 N, 14.75 MPa, 2.44 J and 0.0531 J.mm-2, respectively. As a result, the data obtained from cutting tests of the olive sucker can be used in a new design and development of an experimental prototype of olive branch cutting and pruning machine.


Author(s):  
Muhammad Rizwan Awan ◽  
Hernán A. González Rojas ◽  
José I. Perat Benavides ◽  
Saqib Hameed

AbstractSpecific energy consumption is an important indicator for a better understanding of the machinability of materials. The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultra-thin discs at comparatively low and medium feed rates. Using an experimental technique, the cutting power was measured at four predefined feed rates for S235JR, intermetallic Fe-Al(40%), and C45K with different thermal treatments. The variation in the specific energy consumption with the material removal rate was analyzed through an empirical model, which enabled us to distinguish three phenomena of energy dissipation during material removal. The thermal treatment and mechanical properties of materials have a significant impact on the energy consumption pattern, its corresponding components, and cutting power. Ductile materials consume more specific cutting energy than brittle materials. The specific cutting energy is the minimum energy required to remove the material, and plowing energy is found to be the most significant phenomenon of energy dissipation.


CERNE ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Erica Moraes de Souza ◽  
José Reinaldo Moreira da Silva ◽  
José Tarcísio Lima ◽  
Alfredo Napoli ◽  
Túlio Jardim Raad ◽  
...  

Modern technologies for continuous carbonization of Eucalyptus sp. require special care in wood cutting procedures. Choosing the right tool, cutting speeds and feed rates is important to manage time and energy consumption, both of which being critical factors in optimizing production. The objective of this work is to examine the influence of machining parameters on the specific cutting energy consumption of Eucalyptus sp. stands MN 463 and VM 01, owned by V&M Florestal. Tests were performed at the Wood Machining Laboratory of the Federal University of Lavras (DCF/UFLA). Moist logs 1.70m in length were used. The experiment was set up using a 3 x 3 x 4 x 2 factorial design (cutting speed x feed rate x number of teeth x tree stand). Results were subjected to analysis of variance and means were compared by the Tukey test at the 5% significance level. Greater cutting speeds, lower feed rates and the 40 teeth circular saw consumed more specific energy. Stand MN 463 consumed more specific energy. The combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 24 teeth circular saw produced better specific energy consumption results for stand MN 463. As for stand VM 01, the combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 20 teeth circular saw resulted in lower specific energy consumption.


DYNA ◽  
2015 ◽  
Vol 82 (191) ◽  
pp. 171-175 ◽  
Author(s):  
Nelson Arzola ◽  
Joyner García

The aim of this work was to study the behavior of sugarcane bagasse submitted to cutting, as a function of its moisture content, angle of the blade edge and cutting speed. The specific cutting energy and peak cutting force were measured using an experimental facility developed for this series of experiments. An analysis of the results of the full factorial experimental design using a statistical analysis of variance (ANOVA) was performed. The response surfaces and empirical models for the specific cutting energy and peak cutting force were obtained using statistical analysis system software. Low angle of the blade edge and low moisture content are, in this order, the most important experimental factors in determining a low specific cutting energy and a low peak cutting force respectively. The best cutting conditions are achieved for an angle of blade edge of 20.8° and a moisture content of 10% w. b. The results of this work could contribute to the optimal design of sugarcane bagasse pre-treatment systems.


Author(s):  
Salman S. Warsi ◽  
Hussain I. Jaffery ◽  
Riaz Ahmad ◽  
Mushtaq Khan ◽  
Sohail Akram

Recent researches in machining have revealed that electricity consumption of machine tools accounts for 90% of their environmental impact. Therefore, minimization of energy consumption will not only enhance its economic viability but will also reduce CO2 emissions. Most energy consumption studies present in literature focus on machining at low speeds (up to 500 m/min), whereas the specific cutting energy and power consumption trends at higher speeds have not been thoroughly investigated. This study analyses energy consumption in the machining of aluminium alloy Al-6061 T6 at high cutting speeds (up to 1000m/min and feeds up to 0.4 mm/rev). Full factorial experiments with three replicates were performed for orthogonal machining of AL-6061 T6 alloy which is one of the widely used materials in aerospace, automobiles, defence, sports and biomedical industries. A strict power measurement protocol was followed in accordance with CO2PE! (Cooperative Effort in Process Emission) proposed taxonomy. All the experiments were performed by unused inserts, therefore tool wear effect was not considered for power and energy calculations. The results were analysed using ANOVA and the contribution of speed and feed on energy consumption were quantified. Energy consumption map was prepared for varied speeds and feeds that revealed the presence of the optimum energy zones.


Sign in / Sign up

Export Citation Format

Share Document