Analysis of Power and Specific Cutting Energy Consumption in Orthogonal Machining of Al 6061-T6 Alloys at Transitional Cutting Speeds

Author(s):  
Salman S. Warsi ◽  
Hussain I. Jaffery ◽  
Riaz Ahmad ◽  
Mushtaq Khan ◽  
Sohail Akram

Recent researches in machining have revealed that electricity consumption of machine tools accounts for 90% of their environmental impact. Therefore, minimization of energy consumption will not only enhance its economic viability but will also reduce CO2 emissions. Most energy consumption studies present in literature focus on machining at low speeds (up to 500 m/min), whereas the specific cutting energy and power consumption trends at higher speeds have not been thoroughly investigated. This study analyses energy consumption in the machining of aluminium alloy Al-6061 T6 at high cutting speeds (up to 1000m/min and feeds up to 0.4 mm/rev). Full factorial experiments with three replicates were performed for orthogonal machining of AL-6061 T6 alloy which is one of the widely used materials in aerospace, automobiles, defence, sports and biomedical industries. A strict power measurement protocol was followed in accordance with CO2PE! (Cooperative Effort in Process Emission) proposed taxonomy. All the experiments were performed by unused inserts, therefore tool wear effect was not considered for power and energy calculations. The results were analysed using ANOVA and the contribution of speed and feed on energy consumption were quantified. Energy consumption map was prepared for varied speeds and feeds that revealed the presence of the optimum energy zones.

CERNE ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Erica Moraes de Souza ◽  
José Reinaldo Moreira da Silva ◽  
José Tarcísio Lima ◽  
Alfredo Napoli ◽  
Túlio Jardim Raad ◽  
...  

Modern technologies for continuous carbonization of Eucalyptus sp. require special care in wood cutting procedures. Choosing the right tool, cutting speeds and feed rates is important to manage time and energy consumption, both of which being critical factors in optimizing production. The objective of this work is to examine the influence of machining parameters on the specific cutting energy consumption of Eucalyptus sp. stands MN 463 and VM 01, owned by V&M Florestal. Tests were performed at the Wood Machining Laboratory of the Federal University of Lavras (DCF/UFLA). Moist logs 1.70m in length were used. The experiment was set up using a 3 x 3 x 4 x 2 factorial design (cutting speed x feed rate x number of teeth x tree stand). Results were subjected to analysis of variance and means were compared by the Tukey test at the 5% significance level. Greater cutting speeds, lower feed rates and the 40 teeth circular saw consumed more specific energy. Stand MN 463 consumed more specific energy. The combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 24 teeth circular saw produced better specific energy consumption results for stand MN 463. As for stand VM 01, the combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 20 teeth circular saw resulted in lower specific energy consumption.


2020 ◽  
Vol 106 (7-8) ◽  
pp. 2949-2960 ◽  
Author(s):  
Salman Sagheer Warsi ◽  
Riaz Ahmad ◽  
Syed Husain Imran Jaffery ◽  
Mujtaba Hassan Agha ◽  
Mushtaq Khan

2016 ◽  
Vol 842 ◽  
pp. 14-18
Author(s):  
Sri Raharno ◽  
Yatna Yuwana Martawirya ◽  
Heng Rath Visith ◽  
Jeffry Aditya Cipta Wijaya

Manufacturing industries have consumed 30% of the total world energy. The main energy source used in those manufacturing industries is the electricity generated from fossil fuels such as oil, gas, and coal as a result in causing the environmental and economic issues. This paper presents an experimental study in order to get the minimum energy consumption during turning of aluminum 6010 with the conventional machine tool under dry cutting condition by optimizing the cutting parameters to contribute to those issues. An analysis of variance (ANOVA) was employed to analyze the effects and contribution of depth of cut, feed, and cutting speed on the response variable, specific cutting energy. The result of this experiment showed that the feed was the most significant factor for minimizing energy consumption followed by the cutting speed and the depth of cut. The minimum energy consumption was obtained when the highest level of cutting parameters have been used.


2017 ◽  
Vol 45 (113) ◽  
Author(s):  
Débora Fernanda Reis Nascimento ◽  
Luiz Eduardo de Lima Melo ◽  
José Reinaldo Moreira da Silva ◽  
Paulo Fernando Trugilho ◽  
Alfredo Napoli

2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879779 ◽  
Author(s):  
Sohail Akram ◽  
Syed Husain Imran Jaffery ◽  
Mushtaq Khan ◽  
Muhammad Fahad ◽  
Aamir Mubashar ◽  
...  

This research focuses on the study of the effects of processing conditions on the Johnson–Cook material model parameters for orthogonal machining of aluminum (Al 6061-T6) alloy. Two sets of parameters of Johnson–Cook material model describing material behavior of Al 6061-T6 were investigated by comparing cutting forces and chip morphology. A two-dimensional finite element model was developed and validated with the experimental results published literature. Cutting tests were conducted at low-, medium-, and high-speed cutting speeds. Chip formation and cutting forces were compared with the numerical model. A novel technique of cutting force measurement using power meter was also validated. It was found that the cutting forces decrease at higher cutting speeds as compared to the low and medium cutting speeds. The poor prediction of cutting forces by Johnson–Cook model at higher cutting speeds and feed rates showed the existence of a material behavior that does not exist at lower or medium cutting speeds. Two factors were considered responsible for the change in cutting forces at higher cutting speeds: change in coefficient of friction and thermal softening. The results obtained through numerical investigations after incorporated changes in coefficient of friction showed a good agreement with the experimental results.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5697
Author(s):  
Tarek Elgnemi ◽  
Victor Songmene ◽  
Jules Kouam ◽  
Martin B.G. Jun ◽  
Agnes Marie Samuel

This article presents the influence of machining conditions on typical process performance indicators, namely cutting force, specific cutting energy, cutting temperature, tool wear, and fine dust emission during dry milling of CFRPs. The main goal is to determine the machining process window for obtaining quality parts with acceptable tool performance and limited dust emission. For achieving this, the cutting temperature was examined using analytical and empirical models, and systematic cutting experiments were conducted to assess the reliability of the theoretical predictions. A full factorial design was used for the experimental design. The experiments were conducted on a CNC milling machine with cutting speeds of 10,000, 15,000, and 20,000 rpm and feed rates of 2, 4, and 6 µm/tooth. Based on the results, it was ascertained that spindle speed significantly affects the cutting temperature and fine particle emission while cutting force, specific cutting energy, and tool wear are influenced by the feed rate. The optimal conditions for cutting force and tool wear were observed at a cutting speed of 10,000 rpm. The cutting temperature did not exceed the glass transition temperature for the cutting speeds tested and feed rates used. The fine particles emitted ranged from 0.5 to 10 µm aerodynamic diameters with a maximum concentration of 2776.6 particles for those of 0.5 µm diameters. Finally, results of the experimental optimization are presented, and the model is validated. The results obtained may be used to better understand specific phenomena associated with the milling of CFRPs and provide the means to select effective milling parameters to improve the technology and economics of the process.


Author(s):  
Muhammad Rizwan Awan ◽  
Hernán A. González Rojas ◽  
José I. Perat Benavides ◽  
Saqib Hameed

AbstractSpecific energy consumption is an important indicator for a better understanding of the machinability of materials. The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultra-thin discs at comparatively low and medium feed rates. Using an experimental technique, the cutting power was measured at four predefined feed rates for S235JR, intermetallic Fe-Al(40%), and C45K with different thermal treatments. The variation in the specific energy consumption with the material removal rate was analyzed through an empirical model, which enabled us to distinguish three phenomena of energy dissipation during material removal. The thermal treatment and mechanical properties of materials have a significant impact on the energy consumption pattern, its corresponding components, and cutting power. Ductile materials consume more specific cutting energy than brittle materials. The specific cutting energy is the minimum energy required to remove the material, and plowing energy is found to be the most significant phenomenon of energy dissipation.


Author(s):  
Salman Sagheer Warsi ◽  
Syed Husain Imran Jaffery ◽  
Riaz Ahmad ◽  
Mushtaq Khan ◽  
Liaqat Ali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document