A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075

2016 ◽  
Vol 118 ◽  
pp. 13-20 ◽  
Author(s):  
N. Liu ◽  
S.B. Wang ◽  
Y.F. Zhang ◽  
W.F. Lu
Author(s):  
S. D. Supekar ◽  
B. A. Gozen ◽  
B. Bediz ◽  
O. B. Ozdoganlar ◽  
S. J. Skerlos

This article investigates the feasibility of using supercritical carbon dioxide based metalworking fluids (scCO2 metalworking fluids (MWFs)) to improve micromachinability of metals. Specifically, sets of channels were fabricated using micromilling on 304 stainless steel and 101 copper under varying machining conditions with and without scCO2 MWF. Burr formation, average specific cutting energy, surface roughness, and tool wear were analyzed and compared. Compared to dry machining, use of scCO2 MWF reduced burr formation in both materials, reduced surface roughness by up to 69% in 304 stainless steel and up to 33% in 101 copper, tool wear by up to 20% in 101 copper, and specific cutting energy by up to 87% in 304 stainless steel and up to 40% in 101 copper. The results demonstrate an improvement in micromachinability of the materials under consideration and motivate future investigations of scCO2 MWF-assisted micromachining to reveal underlying mechanisms of functionality, as well as to directly compare the performance of scCO2 MWF with alternative MWFs appropriate for micromachining.


2016 ◽  
Vol 842 ◽  
pp. 14-18
Author(s):  
Sri Raharno ◽  
Yatna Yuwana Martawirya ◽  
Heng Rath Visith ◽  
Jeffry Aditya Cipta Wijaya

Manufacturing industries have consumed 30% of the total world energy. The main energy source used in those manufacturing industries is the electricity generated from fossil fuels such as oil, gas, and coal as a result in causing the environmental and economic issues. This paper presents an experimental study in order to get the minimum energy consumption during turning of aluminum 6010 with the conventional machine tool under dry cutting condition by optimizing the cutting parameters to contribute to those issues. An analysis of variance (ANOVA) was employed to analyze the effects and contribution of depth of cut, feed, and cutting speed on the response variable, specific cutting energy. The result of this experiment showed that the feed was the most significant factor for minimizing energy consumption followed by the cutting speed and the depth of cut. The minimum energy consumption was obtained when the highest level of cutting parameters have been used.


2017 ◽  
Vol 45 (113) ◽  
Author(s):  
Débora Fernanda Reis Nascimento ◽  
Luiz Eduardo de Lima Melo ◽  
José Reinaldo Moreira da Silva ◽  
Paulo Fernando Trugilho ◽  
Alfredo Napoli

2019 ◽  
Vol 10 (2) ◽  
pp. 561-573 ◽  
Author(s):  
Muhammad Ali Khan ◽  
Syed Husain Imran Jaffery ◽  
Mushtaq Khan ◽  
Muhammad Younas ◽  
Shahid Ikramullah Butt ◽  
...  

Abstract. Productivity and economy are key elements of any sustainable manufacturing system. While productivity is associated to quantity and quality, economy focuses on energy efficient processes achieving an overall high output to input ratio. Machining of hard-to-cut materials has always posed a challenge due to increased tool wear and energy loss. Cryogenics have emerged as an effective means to improve sustainability in the recent past. In the present research the use of cooling conditions has been investigated as an input variable to analyze its effect on tool wear, specific cutting energy and surface roughness in combination with other input machining parameters of feed rate, cutting speed and depth of cut. Experimental design was based on Taguchi design of experiment. Analysis of Variance (ANOVA) was carried out to ascertain the contribution ratio of each input. Results showed the positive effect of coolant usage, particularly cryogenic, on process responses. Tool wear was improved by 33 % whereas specific cutting energy and surface roughness were improved by 10 % and 9 % respectively by adapting the optimum machining conditions.


Author(s):  
Xiao-Fei Song ◽  
Jian-Hui Peng ◽  
Ling Yin ◽  
Bin Lin

Dental cutting using handpieces has been the art of dentists in restorative dentistry. This paper reports on the scientific approach of dental cutting of two dental ceramics using a high-speed electric handpiece and coarse diamond burs in simulated clinical conditions. Cutting characteristics (forces, force ratios, specific removal energy, surface roughness, and morphology) of feldspar and leucite glass ceramics were investigated as functions of the specific material removal rate, Qw and the maximum undeformed chip thickness, hmax. The results show that up and down cutting remarkably affected cutting forces, force ratios, and specific cutting energy but did not affect surface roughness and morphology. Down cutting resulted in much lower tangential and normal forces, and specific cutting energy, but higher force ratios. The cutting forces increased with the Qw and hmax while the specific cutting energy decreased with the Qw and hmax. The force ratios and surface roughness showed no correlations with the Qw and hmax. Surface morphology indicates that the machined surfaces contained plastically flowed and brittle fracture regions at any Qw and hmax. Better surface quality was achieved at the lower Qw and the smaller hmax. These results provide fundamental data and a scientific understanding of ceramic cutting using electric dental handpieces in dental practice.


Author(s):  
Chinmaya R. Dandekar ◽  
Yung C. Shin

Metal matrix composites due to their excellent properties of high specific strength, fracture resistance and corrosion resistance are highly sought after over their non-ferrous alloys, but these materials also present difficulty in machining. Excessive tool wear and high tooling costs of diamond tools makes the cost associated with machining of these composites very high. This paper is concerned with machining of high volume fraction long-fiber MMC’s, which has seldom been studied. The composite material considered for this study is an Al-2%Cu aluminum matrix composite reinforced with 62% by volume fraction alumina fibers (Al-2%Cu/Al2O3). Laser-machining is utilized to improve the tool life and the material removal rate while minimizing the sub-surface damage. The effectiveness of the laser-assisted machining process is studied by measuring the cutting forces, specific cutting energy, surface roughness, sub-surface damage and tool wear under various material removal temperatures. A multi-phase finite element model is developed in ABAQUS/Standard to identify and assist in selection of cutting parameters such as; tool rake angle, cutting speed and material removal temperature. The multi-phase model is also successful in predicting the damage depth on machining. The optimum material removal temperature is established as 300°C at a cutting speed of 30 m/min. LAM provides a 65% reduction in the surface roughness, specific cutting energy, the tool wear rate and minimum sub-surface damage over conventional machining using the same cutting conditions.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1181
Author(s):  
Dinh Son Tran ◽  
Victor Songmene ◽  
Anh Dung Ngo ◽  
Jules Kouam ◽  
Arturo Rodriguez-Uribe ◽  
...  

The machinability of composite materials depends on reinforcements, matrix properties, cutting parameters, and on the cutting tool used (material, coating, and geometry). For new composites, experimental studies must be performed in order to understand their machinability, and thereby help manufacturers establishing appropriate cutting data. In this study, investigations are conducted to analyze the effects of cutting parameters and drill bit diameter on the thrust force, surface roughness, specific cutting energy, and dust emission during dry drilling of a new hybrid biocomposite consisting of polypropylene reinforced with miscanthus fibers and biochar. A full factorial design was used for the experimental design. It was found that the feed rate, the spindle speed, and the drill bit diameter have significant effects on the thrust force, the surface roughness, and the specific cutting energy. The effects of the machining parameters and the drill bit diameter on ultrafine particles emitted were not statistically significant, while the feed rate and drill bit diameter had significant effects on fine particle emission.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 198
Author(s):  
Binayak Sen ◽  
Munish Kumar Gupta ◽  
Mozammel Mia ◽  
Danil Yurievich Pimenov ◽  
Tadeusz Mikołajczyk

The necessity to progress towards sustainability has inspired modern researchers to examine the lubrication and cooling effects of vegetable oils on conventional metal cutting operations. Consequently, as an eco-friendly vegetable product, castor oil can be the right choice as Minimum quantity lubrication (MQL) base fluid. Nonetheless, the high viscosity of castor oil limits its flowability and restricts its industrial application. Conversely, palm oil possesses superior lubricity, as well as flowability characteristics. Hence, an attempt has been made to improve the lubrication behavior of castor oil. Here, six castor-palm mixtures (varying from 1:0.5–1:3) were utilized as MQL-fluid, and the values of machining responses viz. average surface roughness, specific cutting energy, and tool wear were evaluated. Furthermore, an integrated Shannon’s Entropy-based Technique for order preference by similarity to ideal solution (TOPSIS) framework was employed for selecting the most suitable volume ratio of castor-palm oil mixture. The rank provided by the TOPSIS method confirmed that 1:2 was the best volume ratio for castor-palm oil mixture. Afterward, a comparative analysis demonstrated that the best castor-palm volume fraction resulted in 8.262 and 16.146% lowering of surface roughness, 5.459 and 7.971% decrement of specific cutting energy, 2.445 and 3.155% drop in tool wear compared to that of castor and palm oil medium, respectively.


Author(s):  
Muhammad Rizwan Awan ◽  
Hernán A. González Rojas ◽  
José I. Perat Benavides ◽  
Saqib Hameed

AbstractSpecific energy consumption is an important indicator for a better understanding of the machinability of materials. The present study aims to estimate the specific energy consumption for abrasive metal cutting with ultra-thin discs at comparatively low and medium feed rates. Using an experimental technique, the cutting power was measured at four predefined feed rates for S235JR, intermetallic Fe-Al(40%), and C45K with different thermal treatments. The variation in the specific energy consumption with the material removal rate was analyzed through an empirical model, which enabled us to distinguish three phenomena of energy dissipation during material removal. The thermal treatment and mechanical properties of materials have a significant impact on the energy consumption pattern, its corresponding components, and cutting power. Ductile materials consume more specific cutting energy than brittle materials. The specific cutting energy is the minimum energy required to remove the material, and plowing energy is found to be the most significant phenomenon of energy dissipation.


CERNE ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Erica Moraes de Souza ◽  
José Reinaldo Moreira da Silva ◽  
José Tarcísio Lima ◽  
Alfredo Napoli ◽  
Túlio Jardim Raad ◽  
...  

Modern technologies for continuous carbonization of Eucalyptus sp. require special care in wood cutting procedures. Choosing the right tool, cutting speeds and feed rates is important to manage time and energy consumption, both of which being critical factors in optimizing production. The objective of this work is to examine the influence of machining parameters on the specific cutting energy consumption of Eucalyptus sp. stands MN 463 and VM 01, owned by V&M Florestal. Tests were performed at the Wood Machining Laboratory of the Federal University of Lavras (DCF/UFLA). Moist logs 1.70m in length were used. The experiment was set up using a 3 x 3 x 4 x 2 factorial design (cutting speed x feed rate x number of teeth x tree stand). Results were subjected to analysis of variance and means were compared by the Tukey test at the 5% significance level. Greater cutting speeds, lower feed rates and the 40 teeth circular saw consumed more specific energy. Stand MN 463 consumed more specific energy. The combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 24 teeth circular saw produced better specific energy consumption results for stand MN 463. As for stand VM 01, the combination of cutting speed 46 m.s-1, feed rate 17 m.min-1 and 20 teeth circular saw resulted in lower specific energy consumption.


Sign in / Sign up

Export Citation Format

Share Document