Improving the Oil-Free Scroll Vacuum Pump Efficiency

Author(s):  
A.V. Tyurin ◽  
A.V. Burmistrov ◽  
S.I. Salikeev ◽  
A.A. Raykov

Improving the quality of manufactured products involves reducing any contaminants introduced into the vacuum chamber from the pumping means. Scroll vacuum pumps, which are constantly developing, are the most promising for oil-free pumping. Relying on the mathematical model developed, we examined the influence of the main parameters of the scroll on the scroll pump performance, in particular, the influence of the radius of the base circle on the pumping speed and the power consumption of the scroll pump at fixed and variable radii of the pump housing bore. Maintaining the overall dimensions of the pump with an increase in the radius of the base circle proves to lead to an exponential increase in the limiting residual pressure and a decrease in energy efficiency due to a decrease in the number of scroll wraps and, as a consequence, an increase in backflows. For the pump under consideration, when the base circle radius is more than 3.5 mm, the limiting residual pressure exceeds 10 Pa, and the vacuum scroll pump can no longer be a full-fledged oil-free alternative to oil-sealed vacuum pumps. With an increase in the radius of the base circle, while maintaining the number of scroll wraps, the radius of curvature of the outer wraps will increase; this results in the backflow decrease, leading to a decrease, albeit insignificant, in the limiting residual pressure. The energy efficiency of the scroll pump decreases with decreasing pump inlet pressure. The above dependencies make it possible to choose the optimal geometry of the scrolls, based on the specific conditions for which the vacuum scroll pump is designed

Author(s):  
N.A. Jurk ◽  

The article presents scientific research in the field of statistical controllability of the food production process using the example of bakery products for a certain time interval using statistical methods of quality management. During quality control of finished products, defects in bakery products were identified, while the initial data were recorded in the developed form of a checklist for registering defects. It has been established that the most common defect is packaging leakage. For the subsequent statistical assessment of the stability of the production process and further analysis of the causes of the identified defect, a Shewhart control chart (p-card by an alternative feature) was used, which allows you to control the quality of manufactured products by the number of defects detected. Analyzing the control chart, it was concluded that studied process is conditionally stable, and the emerging defects are random. At the last stage of the research, the Ishikawa causal diagram was used, developed using the 6M mnemonic technique, in order to identify the most significant causes that affect the occurrence of the considered defect in bakery products. A more detailed study will allow the enterprise to produce food products that meet the established requirements.


Heritage ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 188-197
Author(s):  
Dorukalp Durmus

Light causes damage when it is absorbed by sensitive artwork, such as oil paintings. However, light is needed to initiate vision and display artwork. The dilemma between visibility and damage, coupled with the inverse relationship between color quality and energy efficiency, poses a challenge for curators, conservators, and lighting designers in identifying optimal light sources. Multi-primary LEDs can provide great flexibility in terms of color quality, damage reduction, and energy efficiency for artwork illumination. However, there are no established metrics that quantify the output variability or highlight the trade-offs between different metrics. Here, various metrics related to museum lighting (damage, the color quality of paintings, illuminance, luminous efficacy of radiation) are analyzed using a voxelated 3-D volume. The continuous data in each dimension of the 3-D volume are converted to discrete data by identifying a significant minimum value (unit voxel). Resulting discretized 3-D volumes display the trade-offs between selected measures. It is possible to quantify the volume of the graph by summing unique voxels, which enables comparison of the performance of different light sources. The proposed representation model can be used for individual pigments or paintings with numerous pigments. The proposed method can be the foundation of a damage appearance model (DAM).


2014 ◽  
Vol 682 ◽  
pp. 480-484 ◽  
Author(s):  
V.F. Torosyan ◽  
E.S. Torosyan

Industrial transition to a totally new level of resources and energy saving necessitates improving the technical level of building materials manufacturing, growing their raw materials base, the assortment, enhancing the quality of manufactured products, cutting their cost price. It requires, first of all, carrying out more detailed research in properties of clay and clay loams, and selecting optimal additives for pottery works. Such disadvantages of clays as burning sensitivity, low compression resistance and flexural strength in a burnt state, low frost resistance cause the impossibility of their application without corrective additives. It is quite difficult to find an additive which can solve all the technological problems mentioned above. This paper provides the development of mixture "clay – electro-melting slag" for ceramic brick, moreover, addition of a steel-smelting slag in the fusion mixture results in the change in mixing water content of ceramic masses, strength and coloration of ceramic samples.


2014 ◽  
Vol 707 ◽  
pp. 283-288
Author(s):  
Xiang Dong Wen ◽  
Zheng Zhou ◽  
Wen Yang Pan ◽  
Mei Shao

According to GB/T3286.1-2012(The determination of calcium oxide and magnesium oxide content in limestone and dolomite), the mathematical model of magnesium oxide content determination in limestone by atomic absorption spectrometry was established. The various uncertainty factors of different elements for a sample were discussed and compared in the testing process. The confidence interval for the measurement result was (0.74±0.03)%,k=2 in uncertainty evaluation .The results showed that the variability of working curve and accuracy of standard solution volume for working curve were main influence factors of uncertainty. It could effectively reduce the uncertainty from the perspective of the main factors,and improve the quality of analysis.


2015 ◽  
Vol 9 (1) ◽  
pp. 1025-1032
Author(s):  
Shi Pengtao ◽  
Li Yan ◽  
Yang Mingshun ◽  
Yao Zimeng

To furthermore optimize the machining parameters and improve the surface quality of the workpieces manufactured by single point incremental forming method, the formation mechanism of the sacle veins on the metal incremental froming workpieces was studied through experiment method. The influence principle of the spindle speed, the feed speed and the material of tip of tools on the length of scale veins was obtained through analyzing the experimental results and building the mathematical model among the length of scale veins were feed speed and spindle speed through measuring the roughness of surfaces and observing the appearance of the forming workpieces. The experimental results showed that, the spindle speed, the feed speed and the material of tool tips have a significant effect on the scale veins formation on the surface of forming workpieces. Therefore, an appropriate group of spindle speed and feed speed can reduce the effect of scale veins on the roughness of single point incremental forming workpieces and furthermore improve the surface quality of forming workpieces.


2021 ◽  
Vol 2021 (6) ◽  
pp. 5435-5440
Author(s):  
VLADIMIRA SCHINDLEROVA ◽  
◽  
IVANA SAJDLEROVA ◽  

Maintenance is a complex, extensive and important issue in terms of its impact on the quality of manufactured products or services provided in all areas of industry. The importance of predictive maintenance for the industry in the 21st century is crucial. However, the right approach to maintenance management is often underestimated in many companies today, although it can have a very positive effect on the company’s efficiency. Using the example of a practical application, the paper includes a comparison of three main maintenance concepts – classical (reactive), planned, predictive through the simulation software Witness. Maintenance concepts are compared in terms of their ability to solve and eliminate failures that occur in production facilities during operation.


2012 ◽  
Vol 19 (Special) ◽  
pp. 57-65 ◽  
Author(s):  
Mirosław Tomera

ABSTRACT The dynamical positioning system is a complex control consisting of a number of components, including: filters, observers, controllers, and propeller allocation systems. The design and preliminary analysis of operational quality of system operation are usually done based on numerical simulations performed with the aid of the mathematical model of the ship. The article presents a concept of the dynamic positioning system applied to steering the training ship Blue Lady used for training captains in the ship handling research and training centre owned by the Foundation for Safety of Navigation and Environment Protection in Ilawa/Kamionka. The simulation tests performed in the numerical environment of Matlab/Simulink have proved the usability of the designed system for steering a ship at low speed.


2020 ◽  
Vol 220 ◽  
pp. 01024
Author(s):  
Deniz Moroz ◽  
Nadzeya Hruntovich ◽  
Aliaksei Kapanski ◽  
Yauhen Shenets ◽  
Mikhail Malashanka ◽  
...  

A complex of tasks that can be solved using mathematical models of the dependence of consumed energy resources on influencing factors are considered in the article. The main type of model for industrial consumers with a simple relationship between energy and technology, is the one-factor model “consumed energy resource-volume of output”. For industrial consumers with a complex relationship between energy and technology, the mathematical model of the dependence of energy resources on technology is determined by several factors. Methods for assessing the current state of energy efficiency, as well as predicting it for the future in the context of the introduction of energy saving measures and changes in the production program were proposed.


2017 ◽  
Vol 9 (4) ◽  
pp. 106
Author(s):  
Dominik Dorosz

During 39th session of UNESCO General Conference which held on 7 November 2017 the date May 16th was proclaimed as International Day of Light (IDL). This decision was made after the success of the International Year of Light (IYL) celebrated in 2015. It confirmed that raising awareness of the social role of photonics is crucial for further development. Based on the rich experience of IYL 2015 ("more than 13,000 activities took place in 147 countries to reach an estimated 100 million people"), the most important goals are to be followed by the IDL, including: raising social awareness, education, showing the influence of photonics on culture and art, promoting foreign cooperation and the important role of conducting basic research. As a result, it will lead to the creation of new solutions based on photonic technology, which has resulted in increased energy efficiency and improved quality of our life.


Sign in / Sign up

Export Citation Format

Share Document