Three-Component Force Measurement Sensor Based on an Elastic Silicone Element and a Magnetometer

Author(s):  
P.A. Trunin ◽  
A.M. Meleshnikov ◽  
M.A. Solovyev ◽  
A.A. Vorotnikov

The presence of force-moment sensing of robotic systems makes it possible to improve the quality of the interaction between the robot and the objects of the external environment. There are many ways to provide force-moment sensing, one of which is to use multicomponent force sensors. However, their cost is quite high, so it is important to search and develop more profitable technical solutions. In this regard, a three-component force measurement sensor was developed, built on the basis of an elastic silicone element, with a built-in permanent magnet, and a hall-effect magnetometer. This technical solution is low-cost. The paper describes the technological process for the production of a three-component force measurement sensor, based on 3D printing of the body with an FDM printer, which makes it cheap to manufacture, and molding of two-component silicone. The paper considers the process of soldering SMD components to boards using a soldering hair dryer, stencils and solder paste, and shows a stand for calibrating the manufactured sensors, consisting of micrometric screws and parts printed on an FDM 3D printer. The mathematical method for calibration is based on the least squares method. The result of calibration of a three-component force measurement sensor is given. The research results in the development of a working sensor with the following characteristics: resolution — 1 mN, sensor sensitivity — 0.005 T / N.

2021 ◽  
Author(s):  
Raffaele Pertusio ◽  
Silvestro Roatta

In biomedical studies as well as in clinical trials, it is often useful to have a reliable measure of the force exerted by the body(eg. clenching force at the teeth or pinch force at fingertips) or on the body by external stimuli (eg. taps to elicit reflexes orlocal pressure for nociceptive stimulation). Thin-film sensors such as FlexiForce ® provide a very handy and versatile solutionfor these application, but can be easily damaged and offer poor accuracy and repeatability, being heavily affected by thesurface material they get in contact with. The aim of the study is the realization of a 3D-printed cover that completely embedsthe sensor, thus providing mechanical protection and increasing reliability of the measurement. The increasing availability of3D printers and of printing materials for medical use allows the user to shape the cover according to specific needs, with shortdeveloping time and low cost.


Author(s):  
Алексей Дмитриевич Акишин ◽  
Иван Павлович Семчук ◽  
Александр Петрович Николаев

Постоянно растущий интерес к разработке новых неинвазивных и безманжетных методов измерения параметров сердечной деятельности, использование которых давало бы возможность непрерывного и удаленного контроля сердечно-сосудистой системы, обуславливает актуальность данной работы. В многочисленных публикациях продолжаются обсуждения преимуществ и недостатков различных методов ранней диагностики сердечно-сосудистых заболеваний. Однако артефакты движения являются сильной помехой, мешающей точной оценке показателей функционирования сердечно-сосудистой системы. Одним из перспективных методов контроля является метод оценки физиологических параметров с использованием фотоплетизмографии. Данная статья посвящена разработке устройства для фотоплетизмографических исследований и алгоритмических методов обработки регистрируемых сигналов для обеспечения мониторинга сердечного ритма с заданной точностью. В работе используются технологии цифровой адаптивной фильтрации полученных сигналов для мониторинга сердечного ритма в условиях внешних механических и электрических помеховых воздействий, ухудшающих точностные характеристики системы, а также разработана архитектура системы и изготовлен макет устройства, который позволил провести измерения для определения оптимального алгоритма цифровой обработки сигналов. При использовании устройства применялись методы адаптивной фильтрации на основе фильтров Винера, фильтров на основе метода наименьших квадратов и Калмановской фильтрации. Разработанное устройство для фотоплетизмографических исследований обеспечило возможность мониторинга сердечного ритма с заданной точностью, контроля текущего состояния организма и может быть использовано в качестве средства диагностики заболеваний сердца The constantly growing interest in the development of new non-invasive and cuff-free methods for measuring the parameters of cardiac activity, the use of which would give the possibility of continuous and remote monitoring of the cardiovascular system, determines the relevance of this work. Numerous publications continue to discuss the advantages and disadvantages of various methods of early diagnosis of cardiovascular disease. However, motion artifacts are a strong hindrance to the accurate assessment of the performance of the cardiovascular system. One of the promising control methods is the method for assessing physiological parameters using photoplethysmography. This article is devoted to the development of a device for photoplethysmographic studies and algorithmic methods for processing recorded signals to ensure monitoring of the heart rate with a given accuracy. The work uses technologies of digital adaptive filtering of the received signals to monitor the heart rate in conditions of external mechanical and electrical interference, which worsen the accuracy characteristics of the system, as well as the architecture of the system and a prototype of the device, which made it possible to carry out measurements to determine the optimal algorithm for digital signal processing. When using the device, the methods of adaptive filtering based on Wiener filters, filters based on the least squares method and Kalman filtering were used. The developed device for photoplethysmographic studies provided the ability to monitor the heart rate with a given accuracy, control the current state of the body and can be used as a means of diagnosing heart diseases


Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 247
Author(s):  
Charlotte Svensson Tengberg ◽  
Carl-Eric Hagentoft

Design-build contractors are challenged with the task of minimizing failure risks when introducing new technical solutions or adapting technical solutions to new conditions, e.g., climate change. They seem to have a disproportional trust in suppliers and their reference cases and might not have adequate resources or methodologies for sufficient evaluation. This creates the potential for serial failures to spread in the construction industry. To mitigate this, it was suggested that a predefined risk assessment framework should be introduced with the aim of providing a prequalification and requirements for the use of the technical solution. The objectives of this paper are to develop a comprehensive risk assessment framework and to explore the framework’s potential to adequately support the design-build contractor’s decisions. The framework uses qualitative assessment, relying on expert workshops and quantitative assessments, with a focus on simulation and probabilities. Tollgates are used to communicate risk assessments to the contractor. The framework is applied to a real-life case study of construction with a CLT-structure for a Swedish design-build contractor, where exposure to precipitation during construction is a key issue. In conclusion, the chosen framework was successful in a design-build contractor context, structuring the process and identifying difficulties in achieving the functional requirements concerning moisture. Three success factors were: documentation and communication, expert involvement, and the use of tollgates. Recommendations to the design-build contractor on construction of CLT structure are to keep construction period short and to use full weather protection on site.


Author(s):  
Murat Fidan ◽  
Alper Bayrak ◽  
Umid Karli

In this study, a low-cost and adaptable isometric strength measurement and exercise development system are described. The implemented system consists of mechanical structure, force measurement sensor, electronic circuit, and computer software. Isometric-isotonic (via spring resistance) strength analysis and various exercise programs can be applied with the system. The developed system has a lower cost compared to its counterparts in the literature and has a structure that can be adapted to different machines and measuring methods. The operability and reliability of the isometric strength measurement and exercise development system have been proven by calibration tests.


2021 ◽  
Vol 13 (5) ◽  
pp. 2836
Author(s):  
Khawar Shahzad ◽  
Muhammad Sultan ◽  
Muhammad Bilal ◽  
Hadeed Ashraf ◽  
Muhammad Farooq ◽  
...  

Poultry are one of the most vulnerable species of its kind once the temperature-humidity nexus is explored. This is so because the broilers lack sweat glands as compared to humans and undergo panting process to mitigate their latent heat (moisture produced in the body) in the air. As a result, moisture production inside poultry house needs to be maintained to avoid any serious health and welfare complications. Several strategies such as compressor-based air-conditioning systems have been implemented worldwide to attenuate the heat stress in poultry, but these are not economical. Therefore, this study focuses on the development of low-cost and environmentally friendly improved evaporative cooling systems (DEC, IEC, MEC) from the viewpoint of heat stress in poultry houses. Thermodynamic analysis of these systems was carried out for the climatic conditions of Multan, Pakistan. The results appreciably controlled the environmental conditions which showed that for the months of April, May, and June, the decrease in temperature by direct evaporative cooling (DEC), indirect evaporative cooling (IEC), and Maisotsenko-Cycle evaporative cooling (MEC) systems is 7–10 °C, 5–6.5 °C, and 9.5–12 °C, respectively. In case of July, August, and September, the decrease in temperature by DEC, IEC, and MEC systems is 5.5–7 °C, 3.5–4.5 °C, and 7–7.5 °C, respectively. In addition, drop in temperature-humidity index (THI) values by DEC, IEC, and MEC is 3.5–9 °C, 3–7 °C, and 5.5–10 °C, respectively for all months. Optimum temperature and relative humidity conditions are determined for poultry birds and thereby, systems’ performance is thermodynamically evaluated for poultry farms from the viewpoint of THI, temperature-humidity-velocity index (THVI), and thermal exposure time (ET). From the analysis, it is concluded that MEC system performed relatively better than others due to its ability of dew-point cooling and achieved THI threshold limit with reasonable temperature and humidity indexes.


Author(s):  
Yang Gao ◽  
Yincheng Jin ◽  
Jagmohan Chauhan ◽  
Seokmin Choi ◽  
Jiyang Li ◽  
...  

With the rapid growth of wearable computing and increasing demand for mobile authentication scenarios, voiceprint-based authentication has become one of the prevalent technologies and has already presented tremendous potentials to the public. However, it is vulnerable to voice spoofing attacks (e.g., replay attacks and synthetic voice attacks). To address this threat, we propose a new biometric authentication approach, named EarPrint, which aims to extend voiceprint and build a hidden and secure user authentication scheme on earphones. EarPrint builds on the speaking-induced body sound transmission from the throat to the ear canal, i.e., different users will have different body sound conduction patterns on both sides of ears. As the first exploratory study, extensive experiments on 23 subjects show the EarPrint is robust against ambient noises and body motions. EarPrint achieves an Equal Error Rate (EER) of 3.64% with 75 seconds enrollment data. We also evaluate the resilience of EarPrint against replay attacks. A major contribution of EarPrint is that it leverages two-level uniqueness, including the body sound conduction from the throat to the ear canal and the body asymmetry between the left and the right ears, taking advantage of earphones' paring form-factor. Compared with other mobile and wearable biometric modalities, EarPrint is a low-cost, accurate, and secure authentication solution for earphone users.


2019 ◽  
Vol 39 (4) ◽  
pp. 388-396 ◽  
Author(s):  
Peng Zhao ◽  
Yao Zhao ◽  
Jianfeng Zhang ◽  
Junye Huang ◽  
Neng Xia ◽  
...  

AbstractAn online and feasible clamping force measurement method is important in the injection molding process and equipment. Based on the sono-elasticity theory, anin situclamping force measurement method using ultrasonic technology is proposed in this paper. A mathematical model is established to describe the relationship between the ultrasonic propagation time, mold thickness, and clamping force. A series of experiments are performed to verify the proposed method. Experimental findings show that the measurement results of the proposed method agree well with those of the magnetic enclosed-type clamping force tester method, with difference squares less than 2 (MPa)2and errors bars less than 0.7 MPa. The ultrasonic method can be applied in molds of different thickness, injection molding machines of different clamping scales, and large-scale injection cycles. The proposed method offers advantages of being highly accurate, highly stable, simple, feasible, non-destructive, and low-cost, providing significant application prospects in the injection molding industry.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Rebecca N. Monastero ◽  
Srinivas Pentyala

Cytokines, including interleukins, interferons, tumor necrosis factors, and chemokines, have a variety of pro- and anti-inflammatory effects in the body through a number of biochemical pathways and interactions. Stimuli, actions, interactions, and downstream effects of cytokines have been investigated in more depth in recent years, and clinical research has also been conducted to implicate cytokines in causal patterns in certain diseases. However, particular cutoffs of cytokines as biomarkers for disease processes have not been well studied, and this warrants future work to potentially improve diagnoses for diseases with inflammatory markers. A limited number of studies in this area are reviewed, considering diseases correlated with abnormal cytokine profiles, as well as specific cutoffs at which cytokines have been deemed clinically useful for diagnosing those diseases through Receiver Operator Characteristics modeling. In light of studies such as those discussed in this review, cytokine testing has the potential to support diagnosis due to its lack of invasiveness and low cost, compared to other common types of testing for infections and inflammatory diseases.


Author(s):  
Paloma Hohmann Poier ◽  
Francisco Godke ◽  
José Aguiomar Foggiatto ◽  
Leandra Ulbricht

Abstract OBJECTIVE Develop and evaluate a low-cost walker with trunk support for senior citizens. METHOD Two-stage descriptive study: development of a walker with trunk support and evaluation with fourth age senior citizens. RESULTS Twenty-three fourth age senior citizens were selected. The evaluated criteria were the immediate influence of the walker on the static stabilometry with baropodometer and the evaluation of gait with accelerometers monitoring time and amplitude of the hip movement. There was a significant decrease in the body oscillation of senior citizens with the use of the developed walker, and there were changes in the joint amplitudes of the hip, but they were not significant. CONCLUSION Using low-cost materials, it was possible to develop and equipment that met resistance and effectiveness requirements. The walker interfered in the balance of the senior citizens, reducing significantly the static body oscillation.


Sign in / Sign up

Export Citation Format

Share Document