Crop Productivity Enhancement under Soybean Based Cropping System through Harvested Rain Water in Malwa Region

Author(s):  
D.H. Ranade ◽  
M.L. Jadav ◽  
Indu Swarup ◽  
O.P. Girothia ◽  
D.V. Bhagat ◽  
...  

Background: Rainwater harvesting is commonly practiced in areas, where the rainfall is insufficient for crop growing. Due to the intermittent nature of run-off events, it is necessary to store the maximum possible amount of rainwater during the rainy season so that it may be used as irrigation to enhance the crop productivity and farm income under soybean based cropping system.Methods: A study was carried out during 2018-2019 in Indore district of Malwa region. Rainwater harvesting tanks at on station (42´21´2.4m) and on farm (15´11´4m) were constructed for irrigation water availability. Provision of water harvesting tank increased the irrigation water availability (1781m3 and 630m3 respectively) and stored water was managed through various irrigation systems viz. rain gun, drip and flood.Result: It was resulted that the provision of water harvesting tanks enhanced the crop productivity and farm income under soybean based cropping system. Availability of irrigation encouraged the farmers to diversify the cropping pattern (soybean-chickpea, soybean -wheat). It is also clear from the study that even with smaller storage tank and through conjunctive use of ground (1164.2m3) and surface water (596m3), multiple crops (Soybean, potato, sweet corn, chickpea, onion, garlic etc.) can be grown. Soybean-Chickpea cropping system at station gave the net return of 70976 Rs/ha with B: C ratio of 3.15. Soybean-Wheat cropping system at farm gave the net return of 119000 Rs/ha with B:C ratio of 3.38. 

Neutron ◽  
2020 ◽  
Vol 20 (01) ◽  
pp. 63-71
Author(s):  
Acep Hidayat ◽  
Marcellino Rico Ariana

The Plantation Network has a land area of ​​375 ha. Population which is directly proportional to the necessities of life, one of which is in the food sector, has made the government take the initiative to meet the needs and welfare of the community with productive agricultural land and fields. The data includes secondary data on 10-year rainfall from Depati Parbo and Kayu Aro Station and 10-year climatology from Kayu Aro Climatology Station. The calculation method used is the rainfall intensity Average method, Evapotranspiration modification Penman method, Debit danalan DR.FJ Mock method, cropping patterns, and irrigation water needs. Related to the calculation of 6 alternative cropping patterns with different types of plants and different initial planting plans by making comparisons with the existing discharge factor (Q80). Obtained that the cropping pattern is very possible, namely using the cropping pattern PADI-PADI-PALAWIJA. The most efficient and optimal planting pattern is that this cropping system consists of PADI-PADI-ON with large water demand in tertiary plots (NFR tertiary plots) producing 0 - 1,308 ltr / sec/ha with a maximum of 1,308 ltr / ha / February II, while the need for irrigation water in the intake (DR intake) ranges from 0 - 1,615 ltr sec/ha with a maximum of 1,615 ltr / sec/ha in February II. The available debit and debit in the Irrigation Network Planning Mark is very abundant with the mainstay discharge (Q80) for irrigation, the maximum available debit (Q80) can occur in November with 202,207 ltr / sec/ha and the minimum in August with 115,012 ltr / sec / Ha. Based on the results of the discharge and water above, it can be determined about the ratio of water/air equilibrium between discharge and water Q80 and the need for irrigation water requires a large/adequate surplus.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 172
Author(s):  
Rina Rani Saha ◽  
Md. Alimur Rahman ◽  
Md. Hafijur Rahman ◽  
Mohammed Mainuddin ◽  
Richard Bell ◽  
...  

In Global Climate Risk Index 2019, Bangladesh has been ranked seventh among the countries most affected by extreme weather events. The salinity intrusion has increased by 27% from 1973 to 2009 in coastal areas of Bangladesh due to impacts of climate change. The cropping intensities of the coastal zones are below than the country’s average intensity (195%), which causes severe food insecurity. In southern coastal zone, soil and water (river/canal) salinity remain the minimum (<4 dS/m) during in July/August but attain the maximum (upto 11 and 25 dS/m, respectively) in March/April. Farmers grow single T.aman rice a year. Therefore, five cropping patterns were tested under ACIAR funded project in Amtali (Barguna district) and Dacope (Khulna) upazilas during 2016–2017 and 2017–2018 irrigating with low salinity surface water (canal/pond) to increase crop productivity. In Amtali, T.aman-Potato-Mungbean-T.aus cropping pattern gave the highest (20.18 t/ha) rice equivalent yield (REY), which increased 360% REY over the farmers’ practice (T.aman-fallow-fallow). However, in Dacope, T.aman-spinach-fallow showed the highest REY (13.99 t/ha) that increased 211% REY compared to farmers’ practice. The improved cropping patterns can be practiced within the polder (embankment for water control) for increasing crop productivity and profitability in salt-affected coastal zones of Bangladesh.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 147
Author(s):  
Sukanta Kumar Sarangi ◽  
Buddheswar Maji ◽  
Parbodh Chander Sharma ◽  
Saheb Digar ◽  
Kshirendra Kumar Mahanta ◽  
...  

Rice is the predominant crop during wet season (July–December) and majority of land remain fallow during dry season (January–June) in the coastal saline region of West Bengal, India. Sustainable cropping system intensification in this salt affected region needs improved package of practices which conserve soil moisture, facilitate early crop establishment, ensures profitability and has positive effect on soil health. To achieve these objectives in a rice-based cropping system, we evaluated seven treatments for potato crop during the dry season viz. T1: ridge sowing (control), T2: Zero tillage (ZT) sowing with 9 t ha−1 paddy straw mulching (PSM), T3: T2 + foliar spray of nutrients, T4: ZT sowing with 12 t ha−1 PSM, T5: T4 + foliar spray of nutrients, T6: ZT sowing with 15 t ha−1 PSM, T7: T6 + foliar spray of nutrients in randomized block design with five replications. This study was conducted during 2016-2019 in the Gosaba island of the Indian Sundarbans. Cost of cultivation of potato reduced by about 27% due to ZT sowing (₹ 81,287 ha−1) compared to ridge sowing (₹ 1,11,260 ha−1). Tuber yield, net return and irrigation water productivity was significantly increased in T5, T6 and T7 over other treatments. There was reduction in soil salinity (ECe reduced from 5 to 3 dS m−1), bulk density (from 1.49 to 1.44 Mg m−3), irrigation water use (less 20 cm), conservation of soil moisture (4–8%), and increase in organic carbon (0.39 to 0.44%) due to ZT sowing with PSM. Rice-ZT potato-green gram cropping system was the most profitable one with highest net return (₹ 1,71,752 ha−1), however, the benefit-cost ratio was highest (2.33) with Rice-ZT potato cropping system.


2018 ◽  
Vol 159 ◽  
pp. 01026
Author(s):  
Edy Anto Soentoro ◽  
Erlangga Perwira ◽  
Yadi Suryadi ◽  
Winskayati

Shortage of irrigation water supply in dry season prevents many farmers from growing their crops, and the annual benefit from agricultural products will decrease as much as the area of irrigation fields which have lack of water. The objective of this study is to determine the maximum benefit from agricultural products based on water availability, by determining the appropriate cropping pattern and maximum planting areas through linear programming. The case-study location is at Leuwi Kuya Irrigation Region. Planting schedule is selected based on minimum water shortage from simulation of 6 alternative planting schedules. Then, the best pattern of cropping (planting method and the total area) is determined using linear programming. Optimization is carried out in 3 scenarios with various planting methods (conventional and SRI), minimum irrigation water demand (class-area system), and schedule for beginning of the 3-growing seasons annually. Result of this study is the optimal area of the irrigated region that can be planted based on the water availability. The maximum benefit is 89 billion rupiahs, using SRI planting method and distribution of three groups of irrigation fields in water supply schedule.


2016 ◽  
Vol 4 (2) ◽  
pp. 220-231
Author(s):  
Wajid Ali Shahani ◽  
Feng Kaiwen ◽  
Aslam Memon

The crop productivity in Pakistan is very low as majority of the farmers are still practicing traditional farming techniques. The existing crop production technologies do not offer effective and efficient utilization of natural resources, particularly that of water. Moreover, a significant amount of irrigation water is wasted due to uneven fields and ditches. Unevenness of the soil surface also has a major impact on the germination, stand and yield of crops through nutrient water interaction and salt and soil moisture distribution pattern. Therefore, the water use efficiency along with yield per acre could be increase by adopting resource conservation technologies like laser leveling. A sample of 120 growers including 60 wheat growers and 60 cotton growers were selected from Mirpurkhas & Tando Allahyar districts of Sindh province of Pakistan. Study results revealed that about 21 percent irrigation water saved by the adoption of laser leveling technology and also obtained higher yield and profit margins comparatively. Study concluded that adoption of laser leveling technology helps in reducing the farm input costs, improve water use efficiency and enhance crop productivity.


EXTRAPOLASI ◽  
2021 ◽  
Vol 18 (1) ◽  
pp. 25-32
Author(s):  
Hudhiyantoro Hudhiyantoro ◽  
Bayu Aji Dwi Saputro

AbstractBendung Cawak is located in the district of Kepohbaru, Bojonegoro. Bendung Cawak is used for irrigation and water supplies of Kepohbaru, water availability is insufficient, while the amount of land and also residents who need water, so optimization Bendung Cawak is necessary for the water pitcher bendung can be optimized according to the needs.In this study, to maximize the area of land irrigated area to be optimized. In the optimization model used is the optimization of the monthly for 1 year by calculating the area of irrigated land available, land irrigation is met, the greater availability of water and irrigation needs are met. Optimization method used in this calculation is Program Solver.The results obtained by the reliable discharge available in the Cawak dam reservoir are 2.547 m3 / second. The need for irrigation water with the cropping pattern of Palawija-Padi-Padi at the beginning of planting in August I is 0.579 l / sec / ha as a planting plan with the minimum water requirements. As well as optimization, the optimum cropping pattern and initial planting are August I with the Palawija-Padi-Padi planting intensity 291% and with irrigation area MT I 675 ha, MT II 742 ha, MT III 742 ha. AbstrakBendung Cawak terletak di Kecamatan Kepohbaru, Kabupaten Bojonegoro. Layanan Bendung Cawak dipergunakan untuk keperluan irigasi di Daerah Irigasi Cawak Kecamatan Kepohbaru, ketersediaan air yang tidak mencukupi sedangkan banyaknya lahan yang membutuhkan air , sehingga Optimasi Bendung Cawak sangat diperlukan agar air tampungan Bendung dapat dioptimalkan sesuaidengan kebutuhan.Pada studi ini, untuk memaksimalkan luas lahan irigasi dilakukan optimasi luas lahan irigasi . Dalam model optimasi yang digunakan adalah optimasi satu bulanan selama 1 tahun dengan memperhitungkan luas lahan irigasi yang tersedia, luas lahan irigasi yang terpenuhi, besarnya ketersediaan debit air maksimal, dan kebutuhan air irigasi yang dipenuhi. Metode optimasi yang digunakan dalam perhitungan ini yaitu Program Solver.Hasil yang diperoleh debit andalan yang tersedia di tampungan bendung cawak adalah 2,547 m3/detik. kebutuhan air irigasi dengan pola tanam Palawija-Padi-Padi awal tanam Agustus I itu sebesar 0,579 lt/dtk/ha sebagai rencana tanam dengan kebutuhan air paling minimum.Serta optimasi didapatkan pola tanam dan awal tanam yang paling optimum adalah Agustus I dengan pola tanam Palawija-Padi-Padi intensitas tanam 291% dan dengan luas areal irigasi MT I 675 ha, MT II 742 ha, MT III 742 ha.


2021 ◽  
Vol 24 (1) ◽  
pp. 109-117
Author(s):  
A Barman ◽  
S Shome ◽  
MR Khatun ◽  
MM Masud ◽  
S Akther

A field trial on soil test based (STB) fertilizer doses was conducted during the year of 2017-2018 and 2018-2019 in Jashore region (AEZ-11) to find out the most suitable fertilizer doses for four crop based cropping pattern considering the agronomic feasibility and economic return of the system. The experiment consisted of eight different treatments viz. T1: 100% NPKSZnB (STB), T2: T1 + 25% N, T3: T1 + 25% NP, T4: T1 + 25% NK, T5:T1 + 25% PK, T6:T1 + 25% NPK, T7: 75% of T1, T8: Native fertility. Randomized complete block design (RCBD) with three replications was followed. Data revealed that seed yield of mustard was remarkably influenced by fertilizer treatments while grain yield of other components of the cropping system was not affected significantly by the treatments except control or native fertility. It was observed that 25% more NPK over 100% STB dose provided the highest yield of all the component crops. The highest rice equivalent yield (3.34 t ha-1) was recorded from T6 and the lowest (1.88 t ha-1) from T8 treatment. Maximum gross return (Tk. 420000/ha) and marginal benefit cost ratio (4.08) were also obtained from T6 treatment. So, 25% NPK+ 100% STB dose of fertilizer could be followed for productive and remunerative rice based cropping system Mustard-Boro-T. Aus-T.Aman in AEZ-11. Bangladesh Agron. J. 2021, 24(1): 109-117


Author(s):  
S. Ferrant ◽  
A. Selles ◽  
M. Le Page ◽  
A. AlBitar ◽  
S. Mermoz ◽  
...  

<p><strong>Abstract.</strong> Indian agriculture relies on monsoon rainfall and irrigation from surface and groundwater. The inter-annual variability of monsoon rainfalls is high, which forces South Indian farmers to adapt their irrigated area extents to local water availability. We are developing and testing an automatic methodology for monitoring spatio-temporal variations of irrigated crops in near real time based on Sentinel-1 and -2 data feed over the Telangana State, South India. These freely available radar and optical data are systematically acquired worldwide, over India since 2016, on a weekly basis. Their high spatial resolution (10&amp;ndash;20&amp;thinsp;m) are well adapted to the small size field crops that is common in India. We have focused first on drought prone areas, North of Hyderabad. Crop fraction remains low and varies widely (from 10 to 60%, ISRO-NRSC, Bhuvan). Those upstream areas, mainly irrigated with groundwater, are composed by less than 20% of irrigated areas during the dry season (Rabi, December to March) and up to 60% of the surface is used for crop production during the Kharif (June to November), which includes rainfed cotton and drip irrigated maize crops and inundated rice. A machine learning algorithm, the Random Forest (RF) method, was automatically used over 6 growing seasons (January to March and July to November, from 2016 to 2018) from the Sentinel-1&amp;amp;2 data stacked for each season, to create crop mapping at 10&amp;thinsp;m resolution over a study area located in the north of Hyderabad (210 by 110&amp;thinsp;km). Six seasonal land cover field surveys were used to train and validate the classifier, with a specific effort on rice and maize field sampling. The lowest irrigated area extents were found for driest conditions in Rabi 2016 and Kharif 2016, accounting for 3.5 and 5% with moderate classification confusion. This confusion decreases with the increase of irrigated crops areas during Rabi 2017. For this season, 22% of rice and 9% of irrigated crops were detected after heavy rainfall events in September 2017, which have filled surface water tanks (3.4% of the surface area) and groundwater (Central Groundwater Board observations). From this abundance situation, the surface water detected for each season decreased regularly to less than 0.3% together with the rice and irrigated area extents respectively from 22 to 11% and 10 to 3%, despite a good monsoon 2017. Groundwater level show similar trends, with a drop from 20 meters depth in October 2016 and 2017 to more than 30&amp;thinsp;m in June 2018 (more recent available data). The deficit of the monsoon 2018 will certainly bring this situation to a hydrological drought at the beginning of 2019, probably similar to the Rabi 2016 situation. The estimated Irrigated Water Demand (IWD) varies from 51 to 310&amp;thinsp;mm/season, depending on water availability. This methodology shows the potential of automatically monitoring, in near real time, with standard computers, irrigated area extents presenting fast high resolution variability. As it is based on standard global satellite acquisitions, it is foreseen to be used for other regions, for any studies on farmer’s adaptation to climate and hydrological variability, as a proxy to estimate irrigation water needs and water resources availability. In Telangana for instance, it provides an inventory of crop production and irrigation practices before the implementation of mega project infrastructures funded by this new state: - the Kâkâtiya tank restoration program to enhance monsoon runoff capture or the Kaleshwaram project to divert Godavari river water toward upstream Telangana region through tunnels and canals in 20 giant reservoirs.</p>


2020 ◽  
Author(s):  
Beyza Özel ◽  
Yasemin Demir ◽  
Oğuz Başkan ◽  
Emre Alp

&lt;p&gt;Water, energy and food nexus is an integrated framework suggests that the security of one resource is inevitably linked to another&amp;#8217;s. Water availability assures healthy food production whereas agriculture is the dominant user of global freshwater. Water stress due to population growth, climate change or malpractices threatens food security. Within the scope of water for food governance, the water efficiency of agricultural irrigation has to be improved to aid sustainable water and agricultural management. The study investigates water availability and withdrawals, evaluates water resources management scenarios in the agricultural sector in the Sakarya River Basin, Turkey&amp;#8217;s third-largest river basin. Demand-oriented management scenarios propose a variety of technical measures which include improvements in irrigation technology, shifts in the cropping pattern and water-saving irrigation strategies. The effectiveness of scenarios was evaluated using the Water Evaluation and Planning (WEAP) system developed for the upper sub-basin where significant agricultural activities are held with approximately 1 million ha of total effective arable land. WEAP is an integrated water resources system modeling that operates based on the principle of water balance accounting. A climate data set of precipitation, temperature, relative humidity, and wind speed were applied across each sub-basin, partitioned into land-use classes. A one dimensional, two-bucket model for each land-use class transmits water as surface runoff, interflow, percolation, baseflow and evapotranspiration components. The model was calibrated and validated for observed streamflow, reservoir volume, and irrigation water amount. The mean annual precipitation and evapotranspiration in the upper sub-basin are 387 mm/a and 245 mm/a respectively. Agriculture is the dominant user of both surface water and groundwater resources and accounts for the %88 of total water withdrawals in the upper sub-basin. Impacts of agricultural management on irrigation water supply and flow dynamics of streamflow gauges were evaluated upon each measure. When compared to a historic baseline scenario, efficient management measures can save irrigation water up to %10 by shifting crop patterns from sunflower to safflower, %6 by establishing drip irrigation instead of sprinkler, %4 by applying deficient irrigation on cereal cultivated areas. Furthermore, mean streamflow increases by %8 in June where deficient irrigation strategy is practiced on cereals, by %9 in October where cropping pattern is shifted from sunflower to safflower. After a review of various technical measures related to the efficient management of water resources, the study concluded that sustainable agricultural development is possible by adapting conservative agricultural practices that assure water and food security.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document