scholarly journals Temporal Monitoring and Assessment of Inorganic Nitrogen Content of Soil due to Nitrogen Fertilizers and their Related Cytotoxic Effects

Author(s):  
K. Arora ◽  
S. Verma

Background: Indian economy is largely based on agriculture. Major share of agricultural investments goes into chemical fertilizers. Nitrogen (N) fertilizers are used in fields to enhance the crop yield. Most of the reports are based on growth related data, morphological and yield related data but very few reports reveal the facts about genotoxic and cytotoxic effects of these fertilizers. Therefore, the present communication is an attempt in the aforesaid direction. Methods: In a pot experiment, mineral N content of soil in the form of ammonium-N (NH4+-N) and nitrate-N (NO3--N) were analysed at regular interval of 5 days till 30 days after treatment (DAT). On the corresponding days root tip assay was done for cytotoxic analyses and also the temporal changes in NH4+-N and NO3--N contents were observed. Result: In the Ammonium nitrate treatments, higher mitotic index (MI%) percentages were obtained. While for the Urea, NH4+-N content and MI were found to have a positive correlation. Also, it was found that there is an optimum ratio of NH4+-N and NO3--N in each treatment at which the MI% was the maximum. The study gives an interesting insight for the possible cytotoxic effects of the N fertilizers.

2010 ◽  
pp. 134-140
Author(s):  
Andrea Balla Kovács ◽  
Anita Szabó ◽  
Emese Bartáné Szabó

A field experiment was conducted to examine the effects of different nitrogen fertilizers in combination with bacterial fertilizer onnutrient uptake of horseradish and plant available nutrients of the soil. Three different N fertilizers, ammonium-nitrate, urea and calciumnitrate(116 kg ha-1 N) in combination with Microbion UNC bacterial fertilizer (2 kg ha-1) were applied as treatments in a randomizedcomplete block design in three replications. In this paper we presented the results of soil measurements. The soil of the experimental areawas chernozem with medium sufficiency level of N and P and poor level of K.Our main results:The amount of 0.01M CaCl2 soluble inorganic nitrogen fractions, NO3--N and NH4+-N and also the quantity of soluble organic-N werealmost the same in the soil. N fertilizers significantly increased all the soluble N fractions. The amount of NO3--N increased to the greatestextent and the increase of organic N was the slightest. We measured the largest CaCl2 soluble NO3- -N and total-N contents in the plotstreated with ammonium-nitrate, the largest NH4+-N in the plots treated with calcium-nitrate and the largest organic-N fraction in plotstreated with urea.Bacterial inoculation also increased both soluble inorganic nitrogen forms and also total-N content of soil compared to the control. Inthe case of combined (artificial and bacterial fertilizer) treatments we measured lower NO3--N, organic-N and total-N compared to thevalues of plots having only nitrogen fertilizer treatments. On the contrary in the plots with combined treatments the CaCl2 soluble NH4+-Ncontent of soil in more cases were higher than that of values with artificial fertilizer treatment.As a function of calcium-nitrate application increased AL-P2O5 and AL-K2O values were measured compared to control. MicrobionUNC supplement of calcium nitrate yielded also increase in AL-P2O5 and AL-K2O values, till then supplement of ammonium-nitrate fertilizeryielded a decrease in these values compared to the control.All nitrogen fertilizers resulted in a significant decrease in AL-Mg content of soil compared to the control. Nevertheless bacterialfertilizer increased AL-Mg values in any cases.


1986 ◽  
Vol 66 (2) ◽  
pp. 225-236 ◽  
Author(s):  
M. NYBORG ◽  
S. S. MALHI

Fall and spring applications of N fertilizers (56 kg N ha−1) were compared for yield, and for N uptake, of spring-sown barley in 41 experiments in central and northern Alberta and three in north-central Saskatchewan. In addition, loss of fertilizer N from fall to spring was measured by determining mineral N in the soil samples taken before seeding. The N fertilizers were incorporated into the soil, to a depth of 10–12 cm for 42 experiments and to a depth of 4–5 cm for two experiments. The mineral N contents of soils, sampled in May to 60- or 90-cm depths in 22 experiments, indicated an average of 41% of the fall-applied urea N disappeared from the mineral N pool. The losses tended to be greater with fall-applied calcium nitrate than with fall-applied urea. The average increase in yield of barley grain was only 55% as great from fall application compared with spring application. The effect was slightly greater for N uptake in grain. Of the 44 experiments, the lower yield increase, and the lower N uptake from fall application was significant in 40 and 41 cases, respectively. The N uptake by grain tended to be less with calcium nitrate than with urea when the fertilizers were fall-applied. In multiple regression analyses, the ratios of fall:spring for yield increase from urea and for the recovery of urea N in grain were regressed upon date of fall application, soil drainage, fall soil moisture content, soil texture, and soil organic matter content. Of the independent variables, only date of fall application was statistically significant, with more effectiveness of the urea with later date of application. Key words: Fall application of N, mineral N losses, N fertilizers, N uptake, spring application of N, urea fertilizer


2010 ◽  
Vol 34 (5) ◽  
pp. 1653-1665 ◽  
Author(s):  
Josiléia Acordi Zanatta ◽  
Cimélio Bayer ◽  
Frederico C.B. Vieira ◽  
Juliana Gomes ◽  
Michely Tomazi

Nitrogen fertilizers increase the nitrous oxide (N2O) emission and can reduce the methane (CH4) oxidation from agricultural soils. However, the magnitude of this effect is unknown in Southern Brazilian edaphoclimatic conditions, as well as the potential of different sources of mineral N fertilizers in such an effect. The aim of this study was to investigate the effects of different mineral N sources (urea, ammonium sulphate, calcium nitrate, ammonium nitrate, Uran, controlled- release N fertilizer, and urea with urease inhibitor) on N2O and CH4 fluxes from Gleysol in the South of Brazil (Porto Alegre, RS), in comparison to a control treatment without a N application. The experiment was arranged in a randomized block with three replications, and the N fertilizer was applied to corn at the V5 growth stage. Air samples were collected from a static chambers for 15 days after the N application and the N2O and CH4 concentration were determined by gas chromatography. The topmost emissions occurred three days after the N fertilizer application and ranged from 187.8 to 8587.4 µg m-2 h-1 N. The greatest emissions were observed for N-nitric based fertilizers, while N sources with a urease inhibitor and controlled release N presented the smallest values and the N-ammonium and amidic were intermediate. This peak of N2O emissions was related to soil NO3--N (R² = 0.56, p < 0.08) when the soil water-filled pore space was up to 70 % and it indicated that N2O was predominantly produced by a denitrification process in the soil. Soil CH4 fluxes ranged from -30.1 µg m-2 h-1 C (absorption) to +32.5 µg m-2 h-1 C (emission), and the accumulated emission in the period was related to the soil NH4+-N concentration (R² = 0.82, p < 0.001), probably due to enzymatic competition between nitrification and metanotrophy processes. Despite both of the gas fluxes being affected by N fertilizers, in the average of the treatments, the impact on CH4 emission (0.2 kg ha-1 equivalent CO2-C ) was a hundredfold minor than for N2O (132.8 kg ha-1 equivalent CO2-C). Accounting for the N2O and CH4 emissions plus energetic costs of N fertilizers of 1.3 kg CO2-C kg-1 N regarding the manufacture, transport and application, we estimated an environmental impact of N sources ranging from 220.4 to 664.5 kg ha-1 CO2 -C , which can only be partially offset by C sequestration in the soil, as no study in South Brazil reported an annual net soil C accumulation rate larger than 160 kg ha-1 C due to N fertilization. The N2O mitigation can be obtained by the replacement of N-nitric sources by ammonium and amidic fertilizers. Controlled release N fertilizers and urea with urease inhibitor are also potential alternatives to N2O emission mitigation to atmospheric and systematic studies are necessary to quantify their potential in Brazilian agroecosystems.


1989 ◽  
Vol 69 (3) ◽  
pp. 611-627 ◽  
Author(s):  
D. R. COOTE ◽  
S. SHAH SINGH ◽  
C. WANG

Acid rain and N fertilizers both contribute to soil acidity, but no method has been available to compare their relative impacts. A simple model (SOLACID) is presented to assess quantitatively the acidifying effects of precipitation and N fertilizers on agricultural soils. Acid rain has been treated as a dilute solution of NH4NO3, (NH4)2SO4 and associated acids. Soil and plant pathways are considered for [Formula: see text], [Formula: see text]and [Formula: see text] by way of leaching, gaseous losses from microbial reduction, plant uptake and removal, and organic immobilization and mineralization. Leaching of [Formula: see text] was the factor to which the model was most sensitive. A relationship between base saturation and base cation leaching is described. Field data reported from 21 treatments at six experimental sites were used to test the model, which provided reliable estimates of final pH (r2 = 0.92**) and of changes in base saturation (r2 = 0.86**). Compared with previously published methods, the model provided the best estimates of lime requirements as computed from field measurements (r2 = 0.87**). Key words: Ammonia, sulfate, leaching, nitrification


2012 ◽  
Vol 37 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Åsa Myrbeck ◽  
Maria Stenberg ◽  
Johan Arvidsson ◽  
Tomas Rydberg

2001 ◽  
Vol 24 (1-4) ◽  
pp. 199-206 ◽  
Author(s):  
Eduardo de Matos Nogueira ◽  
Fabiano Vinagre ◽  
Hana Paula Masuda ◽  
Claudia Vargas ◽  
Vânia Lúcia Muniz de Pádua ◽  
...  

Several Brazilian sugarcane varieties have the ability to grow with little addition of inorganic nitrogen fertilizers, showing high contributions of Biological Nitrogen Fixation (BNF). A particular type of nitrogen-fixing association has been described in this crop, where endophytic diazotrophs such as Gluconacetobacter diazotrophicus and Herbaspirillum spp. colonize plant tissues without causing disease symptoms. In order to gain insight into the role played by the sugarcane in the interaction between this plant and endophytic diazotrophs, we investigated gene expression profiles of sugarcane plants colonized by G. diazotrophicus and H. rubrisubalbicans by searching the sugarcane expressed sequence tag SUCEST Database (<A HREF="http://sucest.lad.ic.unicamp.br/en/">http://sucest.lad.ic.unicamp.br/en/</A>). We produced an inventory of sugarcane genes, candidates for exclusive or preferential expression during the nitrogen-fixing association. This data suggests that the host plant might be actively involved in the establishment of the interaction with G. diazotrophicus and H. rubrisubalbicans.


2003 ◽  
Vol 83 (4) ◽  
pp. 425-429 ◽  
Author(s):  
B. J. Zebarth ◽  
Y. Leclerc ◽  
G. Moreau ◽  
R. Gareau ◽  
P. H. Milburn

Information on inorganic N content in commercial potato fields in Atlantic Canada is limited. Soil inorganic N measurements were collected from 228 commercial potato fields from 1999 to 2001. Soil NO3 content to 30 cm depth at planting ranged from 2 to 124 kg N ha-1, and was generally higher for preceding potato, red clover, or hay crops compared to preceding cereal or other crops. Soil NH4 content to 30 cm depth measured at planting ranged from 3 to 64 kg N ha-1, indicating that both soil NO3 and NH4 need to be measured to assess plant-available soil N content in spring. Soil NO3 content to 30-cm depth at tuber harvest ranged from 3 to 250 kg N ha-1, generally increased with increasing fertilizer N application rate, and differed among different potato cultivars. Soil NO3 content measured to 30-cm depth in spring ranged from 3 to 100% of soil NO3 at harvest in the preceding fall, indicating that highly variable losses of soil NO3 from the root zone occur between growing seasons. Key words: Nitrate, ammonium, Solanum tuberosum L.


2011 ◽  
Vol 51 (No. 12) ◽  
pp. 553-561 ◽  
Author(s):  
B. Čeh-Brežnik ◽  
A. Tajnšek

In Central Slovenia within a long term static experiment IOSDV we investigated the impact of mineral nitrogen (N) fertilisation (0, 65, 130, 195 kg/ha) on the N content and the N amount in winter wheat (larger roots, stems, spikes and leaves) in EC 81/82 and EC 90/91, employing three systems of management: farmyard manure ploughing in before forecrop maize, straw ploughing in and green manure, no organic fertilisation. At EC 81/82 the N content in larger roots was around twice as high as the N content in stems and around twice as low as the N content in spikes and leaves. There was 80% of the whole N amount in plant located in the spikes and leaves (33&ndash;168 kg/ha) in EC 81/82 and 90% in EC 90/91. Calculated N recovery from mineral fertiliser was 68&ndash;87%; it increased with the increasing N rates in the system with farmyard manure ploughing in and in the system with no organic fertilisation, but not in the system with straw ploughing in and green manure. Between EC 81/82 and EC 90/91 wheat gained from 4 to 34 kg N/ha, but there were more important translocations of N inside the plants, which were higher at higher mineral N rates. There was a significant impact of management system on the N uptake at the highest mineral N rate.


2019 ◽  
Vol 56 (2) ◽  
pp. 239-254 ◽  
Author(s):  
Tanka P. Kandel ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
Alexandre C. Rocateli

AbstractThe aim of this study was to compare the effects of cowpea green manure and inorganic nitrogen (N) fertilizers on yields of winter wheat and soil emissions of nitrous oxide (N2O). The comparisons included cowpea grown solely as green manure where all biomass was terminated at maturity by tillage, summer fallow treatments with 90 kg N ha−1 as urea (90-N), and no fertilization (control) at planting of winter wheat. Fluxes of N2O were measured by closed chamber methods after soil incorporation of cowpea in autumn (October–November) and harvesting of winter wheat in summer (June–August). Growth and yields of winter wheat and N concentrations in grain and straw were also measured. Cowpea produced 9.5 Mg ha−1 shoot biomass with 253 kg N ha−1 at termination. Although soil moisture was favorable for denitrification after soil incorporation of cowpea biomass, low concentrations of soil mineral N restricted emissions of N2O from cowpea treatment. However, increased concentrations of soil mineral N and large rainfall-induced emissions were recorded from the cowpea treatment during summer. Growth of winter wheat, yield, and grain N concentrations were lowest in response to cowpea treatment and highest in 90-N treatment. In conclusion, late terminated cowpea may reduce yield of winter wheat and increase emissions of N2O outside of wheat growing seasons due to poor synchronization of N mineralization from cowpea biomass with N-demand of winter wheat.


Sign in / Sign up

Export Citation Format

Share Document