Renal Damage Induced by Myocardial Ischemia Reperfusion in Mouse: Role of Oxidative Stress

Author(s):  
Xue Tong ◽  
Hong Zhao ◽  
Xiaomei Lu

The aim of this study was to investigate whether oxidative stress has a role in myocardial ischemia reperfusion induced renal damage. The 30 male C57 mice were divided into control group, myocardial ischemia reperfusion (MIR) group and MnTBAP treatment group. In MIR group, the left coronary artery was occluded for 45minutes and reperfusion for 4 weeks. The same procedure was used for the MnTBAP group, with the additional step of MnTBAP (10mg/kg) administered intraperitoneally for 28 days. Before surgery and 4 weeks later, transthoracic echocardiography was performed and urine protein and albumin were measured. At the end of the time, mice were sacrified and kidneys collected for ROS and fibrosis analysis. The plasma was collected for BUN and SCR determination. It was observed that MIR decreased renal function and increased production of ROS, compelled with renal fibrosis. Administration of MnTBAP reduced production of ROS and renal fibrosis and increased renal function. These findings suggest that the MIR plays a causal role in causing renal injury and the MnTBAP exerts renal-protective effects, probably by its antioxidant activities.

2014 ◽  
Vol 934 ◽  
pp. 165-172
Author(s):  
Cai Hong Bai ◽  
Hai Bo He ◽  
Fan Cheng ◽  
Jun Zhi Wang ◽  
Xiao Chen ◽  
...  

Saponins from Rhizoma Panacis Majoris (SRPM), the bioactive component inRhizoma Panacis Majoris, were reported to possess protective effects on myocardial injury, but the underlying mechanisms remain poorly understood. This study was performed to investigate the protective effects and possible mechanism of SRPM on myocardial ischemia/reperfusion (I/R) injury in vivo. Cardioprotective effects of SPRM in I/R rats was evaluated by hemodynamic, infarct size, biochemical values, histopathological observations, antioxidative relative gene expressions; And the antioxidant activity of SPRM was studied using DPPH scavenging and β-carotene/linoleic acid tests. In the study, we found that SRPM possessed significant free radical-scavenging activity and considerable antioxidant activity, and significantly improved cardiac function, serum biochemical index and antioxidation level, decreased infarct size, reversed the down-regulated mRNA expressions of the SOD1, SOD2, SOD3 in I/R rats. The studies demonstrated that oxidative stress caused the overgeneration and accumulation of ROS, which was central of myocardial I/R injury. SPRM exerted beneficially cardioprotective effects on myocardial I/R injury, mainly scavenging oxidative stress-triggered overgeneration and accumulation of ROS, alleviating myocardial I/R injury and apoptotic cell death.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cheng-Yin Liu ◽  
Yi Zhou ◽  
Tao Chen ◽  
Jing-Chao Lei ◽  
Xue-Jun Jiang

Arctigenin, one of the active ingredients extracted from Great Burdock (Arctium lappa) Achene, has been found to relieve myocardial infarction injury. However, the specific mechanism of Arctigenin against myocardial infarction remains largely unknown. Here, both acute myocardial ischemia-reperfusion injury (AMI/R) rat model and oxygen glucose deprivation (OGD)-induced myocardial cell injury model were constructed to explore the underlying role of AMPK/SIRT1 pathway in Arctigenin-mediated effects. The experimental data in our study demonstrated that Arctigenin ameliorated OGD-mediated cardiomyocytes apoptosis, inflammation and oxidative stress in a dose-dependent manner. Besides, Arctigenin activated AMPK/SIRT1 pathway and downregulated NF-κB phosphorylation in OGD-treated cardiomyocytes, while inhibiting AMPK or SIRT1 by the Compound C (an AMPK inhibitor) or SIRT1-IN-1 (a SIRT1 inhibitor) significantly attenuated Arctigenin-exerted protective effects on cardiomyocytes. In the animal experiments, Arctigenin improved the heart functions and decreased infarct size of the AMI/R-rats, accompanied with downregulated oxidative stress, inflammation and apoptotic levels in the heart tissues. What’s more, Arctigenin enhanced the AMPK/SIRT1 pathway and repressed NF-κB pathway activation. Taken together, our data indicated that Arctigenin reduced cardiomyocytes apoptosis against AMI/R-induced oxidative stress and inflammation at least via AMPK/SIRT1 pathway.


Author(s):  
PETR P. SHCHETININ ◽  
VERA I. SMOL’YAKOVA ◽  
TATYANA M. PLOTNIKOVA ◽  
ALEKSANDR V. KUCHIN ◽  
AleksandrVLADIMIR V. UDUT

Objective: Our research focuses on the endothelial protective effects of 2,6-diisobornyl-4-methylphenol. Its effect was revealed while studying rats experiencing myocardial ischemia/reperfusion. The research results demonstrated that there are significant disturbances in the vascular endothelium manifested by a decrease in the vasodilating activity and antiplatelet properties of 2,6-diisobornyl-4-methylphenol. Methods: We designed our own model of myocardial ischemia/reperfusion and applied it to 52 adult outbred Wistar males. We employed some methods of hemostasiological research such as thromboelastography to determine the antiplatelet activity of the vascular wall, G. Born nephelometric method to study platelet aggregation, phase contrast microscopy to count platelet counts in blood plasma, measurement of intra-arterial pressure to study the endothelial vasodilating function, and calculated the endothelial dysfunction coefficient in rats. Results: Preventive intragastric injection of 2,6-diisobornyl-4-methylphenol (100 mg/kg, 3 days before and 5 days after reproducing the myocardial ischemia/reperfusion model) increased the antiplatelet activity of the vascular endothelium in rats by 37% compared to the endothelium of the abdominal aorta segment of untreated animals. Moreover, 2,6-diisobornyl-4-methylphenol decreased the endothelial dysfunction coefficient by 43% in comparison with the value in the control group. Conclusion: 2,6-diisobornyl-4-methylphenol has an endothelial protective effect proved by its ability to increase antiplatelet properties of the endothelium and decrease the endothelial dysfunction coefficient. The revealed endothelial protective properties of 2,6-diisobornyl-4-methylphenol can be regarded as one of the potential mechanisms of cardioprotective activity of the drug.


2016 ◽  
Vol 39 (6) ◽  
pp. 2158-2172 ◽  
Author(s):  
Guang Tong ◽  
Ben Zhang ◽  
Xuan Zhou ◽  
Jinbo Zhao ◽  
Zhongchan Sun ◽  
...  

Backgrounds/Aims: The selective κ-opioid agonist U50,488H protects heart from myocardial ischemia-reperfusion (MI/R) injury. We examined whether U50,488H is also beneficial for MI/R induced heart failure. Methods: Anesthetized male Sprague-Dawley rats were subjected to 30 min of myocardial ischemia via left anterior descending coronary artery (LAD) occlusion, followed by 4 weeks of reperfusion. Infarct size was examined by Evans blue/triphenyl tetrazolium chloride (TTC) staining. Cardiac function and remodeling were examined by echocardiography and histology. HO-1 gene transcription and expression were measured by RT-PCR and western blot. Results: Compared to vehicle-treated MI/R rats, rats administered a single dose of U50,488H at the beginning of reperfusion exhibited reduced myocardial infarct size, oxidative stress, hypertrophy, and fibrosis, improved mechanical function, and greater neovascularization. U50,488H also increased myocardial heme oxygenase (HO)-1 gene transcription and expression, while pharmacological HO-1 inhibition reversed all protective effects of U50,488H. Furthermore, U50,488H protected control cultured cardiomyoctes against simulated I/R-induced apoptosis but not cultures subjected to shRNA-mediated HO-1 knockdown. Inhibition of HO-1 in the subacute phase of reperfusion reversed the U50,488H-induced increase in neovascularization and suppression of oxidative stress. Finally, U50,488H increased Akt phosphorylation and nuclear translocation of Nrf2, a key HO-1 transcription activator, while inhibition of PI3K-Akt signaling abolished U50,488H-induced Nrf2 nuclear translocation, HO-1 upregulation, and cardioprotection. Conclusion: Activation of HO-1 expression through the PI3K-Akt-Nrf2 pathway may mediate the acute and long-term protective effects of U50,488H against heart failure by enhancing cardiomyocyte survival and neoangiogenesis and by reducing oxidative stress.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yong Li ◽  
Hongbo Zhang ◽  
Zhanhu Li ◽  
Xiaoju Yan ◽  
Yuan Li ◽  
...  

Abstract Background Myocardial ischemia reperfusion injury (MIRI) is defined as tissue injury in the pathological process of progressive aggravation in ischemic myocardium after the occurrence of acute coronary artery occlusion. Research has documented the involvement of microRNAs (miRs) in MIRI. However, there is obscure information about the role of miR-130a-5p in MIRI. Herein, this study aims to investigate the effect of miR-130a-5p on MIRI. Methods MIRI mouse models were established. Then, the cardiac function and hemodynamics were detected using ultrasonography and multiconductive physiological recorder. Functional assays in miR-130a-5p were adopted to test the degrees of oxidative stress, mitochondrial functions, inflammation and apoptosis. Hematoxylin and eosin (HE) staining was performed to validate the myocardial injury in mice. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression patterns of miR-130a-5p, high mobility group box (HMGB)2 and NF-κB. Then, dual-luciferase reporter gene assay was performed to elucidate the targeting relation between miR-130a-5p and HMGB2. Results Disrupted structural arrangement in MIRI mouse models was evident from HE staining. RT-qPCR revealed that overexpressed miR-130a-5p alleviated MIRI, MIRI-induced oxidative stress and mitochondrial disorder in the mice. Next, the targeting relation between miR-130a-5p and HMGB2 was ascertained. Overexpressed HMGB2 annulled the protective effects of miR-130a-5p in MIRI mice. Additionally, miR-130a-5p targets HMGB2 to downregulate the nuclear factor kappa-B (NF-κB) axis, mitigating the inflammatory injury induced by MIRI. Conclusion Our study demonstrated that miR-130a-5p suppresses MIRI by down-regulating the HMGB2/NF-κB axis. This investigation may provide novel insights for development of MIRI treatments.


Sign in / Sign up

Export Citation Format

Share Document