scholarly journals ​Evaluation of Bio-control Agents and Organic Amendments for Managing Root Rot (Rhizoctonia solani) of Clusterbean (Cyamopsis tetragonoloba)

Author(s):  
Manisha Shivran ◽  
R.P. Ghasolia ◽  
Tejpal Bajaya

Background: Root rot of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] caused by Rhizoctonia solani is an important menace and causes significant economic losses in India and chemical pesticides are mostly used to overcome this problem. As per environment and health issues and demand of organic produce, the current study aimed to find the most effective control measure of this dreaded disease through eco-friendly approaches. Methods: The present field-laboratory investigations were conducted during 2018, to evaluate four bio-agents in vitro and in vivo (Trichoderma harzianum, T. viride, Bacillus subtilis and Pseudomonas fluorescens) and five organic amendments in vivo namely wool waste (@ 50 q/ ha), human hair (@ 50 q/ ha), mustard cake (@ 5 q/ ha), castor cake (@ 6 q/ ha) and neem cake (@ 5 q/ ha) were evaluated. Result: Our investigations in vitro with bio-agents depicted that T. harzianum was highly inhibitory (62.65 %) followed by T. viride (48.52%). Seed-cum-soil application (6g/kg seed + 6kg/ha) of T. harzianum was found most superior in reducing disease incidence (74.03%) followed by Trichoderma viride (69.83%) while in organic amendments, neem cake (5 q/ha) was found highly effective (70.07%) followed by castor cake (64.40%), mustard cake, wool waste and least effective was human hair. Though, wool waste and human hair least effective in disease management but preliminarily results indicated encouraging response with dual action, one in reducing disease and another in increasing plant biomass that open the future scope of further more sustainable experimentations. The findings of this study can be utilized to manage the disease effectively and eco-friendly.

Author(s):  
Anam Choudhary ◽  
Shabbir Ashraf

AbstractThe present study was carried out to evaluate the effect of bioagents and organic amendments in suppressing the dry root rot of mungbean incited by Rhizoctonia bataticola. The locally isolated pathogen and fungal biocontrol agents were identified based on morphological and molecular characterization. These identified bioagents were tested in vitro, and the highest mycelial inhibition was recorded in dual culture assay by Trichoderma harzianum (74.44%), and among organic amendments, maximum mycelial inhibition was found in neem cake (61.11%). In a greenhouse study, T. harzianum + neem cake effectively enhanced the percent germination (93.33%) and decreased the percent disease mortality (11.67%) than the other treatments. The morphological parameter like plant height (57.50 cm), dry weight (22.83 g) root nodules (51), pods/plant (58), and 100-seed weight (5.78 g) were found to be at the maximum in this combined application. Physiological pigments viz. chlorophyll (2.41 mg/g) and carotenoids (0.19 mg/g), protein content (5.85 mg/g), and leghemoglobin (11.75 mg/g) were also found to be maximum in T. harzianum + neem cake and minimum phenol content (1.41 mg/g). The study concludes that T. harzianum + neem cake can be recommended as an effective approach for the management of dry root rot of mungbean.


Author(s):  
Shankar Lal Yadav ◽  
R.P. Ghasolia

Background: Root rot of fenugreek (Trigonella foenum-graecum L.) caused by Rhizoctonia solani is an important constraint to the crop and causes significant economic losses in Rajasthan as well as India and fungicides are the major tool to overcome the disease incidence. As per environment and health issues and demand of organically produced fenugreek green leaves and seeds, it is a major concerned to control it by eco-friendly approaches. The current study aimed to find the most effective control measure of this dreaded disease through eco-friendly approaches.Methods: The present field-laboratory investigations were conducted during 2016-17 and 2017-18, to evaluate six plant extracts in vitro and in vivo, namely neem (Azadirachta indica), Alstonia (Alstonia scholaris), garlic (Allium sativum), datura (Datura stramonium), tulsi (Ocimum tenuiflorum), aak (Calotropis gigantea) and four bio-agents (Trichoderma harzianum, T. viride, Bacillus subtilis and Pseudomonas fluorescens) in vivo through seed treatment alone and/or in combination for two consecutive years. Result: Our investigations in vitro with botanicals cleared that garlic clove extract was highly antimycotic to the pathogen (79.52%) followed by aak (62.48%) and neem extract (53.37%). Under field conditions, seed soaking with garlic clove extract (@10%) for 30 minutes was observed the most effective in reducing disease incidence (62.02%) and in increasing seed yield (65.35%) followed by aak (56.56% and 59.82%, respectively). In bio-agents, Trichoderma harzianum + Pseudomonas fluorescens (@ 3+3 g/kg seeds) was found superior in reducing disease incidence (66.81%) and in increasing seed yield (73.06%) and the next best was T. viride + P. fluorescens. The findings of this study can be utilized to manage the disease effectively and eco-friendly and also to obtain organic produce of the fenugreek.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2427-2433 ◽  
Author(s):  
Sahar Arabiat ◽  
Mohamed F. R. Khan

Rhizoctonia damping-off and crown and root rot caused by Rhizoctonia solani are major diseases of sugar beet (Beta vulgaris L.) worldwide, and growers in the United States rely on fungicides for disease management. Sensitivity of R. solani to fungicides was evaluated in vitro using a mycelial radial growth assay and by evaluating disease severity on R. solani AG 2-2 inoculated plants treated with fungicides in the greenhouse. The mean concentration that caused 50% mycelial growth inhibition (EC50) values for baseline isolates (collected before the fungicides were registered for sugar beet) were 49.7, 97.1, 0.3, 0.2, and 0.9 μg ml−1 and for nonbaseline isolates (collected after registration and use of fungicides) were 296.1, 341.7, 0.9, 0.2, and 0.6 μg ml−1 for azoxystrobin, trifloxystrobin, pyraclostrobin, penthiopyrad, and prothioconazole, respectively. The mean EC50 values of azoxystrobin, trifloxystrobin, and pyraclostrobin significantly increased in the nonbaseline isolates compared with baseline isolates, with a resistant factor of 6.0, 3.5, and 3.0, respectively. Frequency of isolates with EC50 values >10 μg ml−1 for azoxystrobin and trifloxystrobin increased from 25% in baseline isolates to 80% in nonbaseline isolates. Although sensitivity of nonbaseline isolates of R. solani to quinone outside inhibitors decreased, these fungicides at labeled rates were still effective at controlling the pathogen under greenhouse conditions.


2010 ◽  
Vol 50 (1) ◽  
pp. 93-97 ◽  
Author(s):  

Effect of Fungal Metabolites and Amendments on Mycelial Growth ofRhizoctonia SolaniA shift towards organic farming suggests amalgamation of organic resources against soil borne plant pathogens. The influence of metabolites of most ubiquitousAspergillusspp., organic amendment extracts and their combined effect withTrichoderma virenswere evaluatedin vitroagainstRhizoctonia solani.The minimum (36.1 mm) growth was attained byR. solaniin co-culture withA. niger.The maximum (42.3 mm) inhibition of mycelial growth of the test organism was observed with culture filtrate ofA. ochraceousfollowed byA. niger, A. fumigatus, A. flavusandA. terreus.Among organic amendment extractants, castor cake exhibited an additive effect on the growth ofT. virens, however, the maximum (41.8 mm) suppressive effect onR. solaniwas observed with vermicompost. With the advance in time, the effect of organic amendment extracts increased markedly. Inhibition potential of culture filtrate mixturte ofA. niger+T. virensandA. ochraceous+T. virensagainstR. solaniwas significantly higher in comparison to the other combinations.


Author(s):  
N. Kiran Kumar ◽  
P. Nagamani ◽  
K. Viswanath ◽  
L. Prasanthi

Background: The plant growth promotion and efficacy against phytopathogens by the endophytic bacteria are being focused now due to their ecofriendly nature. Methods: Endophytic bacteria (24 nos) isolated from the roots, stems and leaves of black gram plants collected from different locations were tested for their potential to inhibit the growth of R. bataticola under in vitro and in vivo conditions. Result: The leaf endophyte BLE 4 exhibited maximum inhibition (79.6%) of R. bataticola followed by BSE 4 (77.4%), BSE 7 (77.0%) and BLE 1 (74.0%). Among these 4 isolates tested as seed treatment and soil application, there was significant increase in dry weight (7.1 g), plant height (37.7 cm), number of branches (13.2) and number of pods (26.2) in BLE 4 treated plots. Whereas, the incidence of dry root rot and yield were insignificant. In the screening study of isolates for their phosphate solubilization potential, protease activity, siderophore and HCN production, no single isolate possessed all the properties, but siderophore production, protease activity and phosphate solubilization were found in BSE 4, BRE 3, BRE 5 and BRE 10 isolates. 


Plant Disease ◽  
2021 ◽  
Author(s):  
Phinda Magagula ◽  
Nicky Taylor ◽  
Velushka Swart ◽  
Noëlani van den Berg

Rosellinia necatrix is the causal agent of white root rot (WRR), a fatal disease affecting many woody plants, including avocado (Persea americana). As with other root diseases, an integrated approach is required to control WRR. No fully effective control methods are available, and no chemical or biological agents against R. necatrix have been registered for use on avocado in South Africa. Fluazinam has shown promising results in the greenhouse and field in other countries, including Spain. The current study aimed to investigate the potential of a fumigant, chloropicrin, and biological control agents (B-Rus, Beta-Bak, Mity-Gro, and Trichoderma) against R. necatrix both in vitro and in vivo as compared with fluazinam. In a greenhouse trial, results showed that Trichoderma and B-Rus were as effective as fluazinam at inhibiting R. necatrix in vitro and suppressed WRR symptoms when applied before inoculation with R. necatrix. In contrast, Mity-Gro and Beta-Bak failed to inhibit the pathogen in vitro and in the greenhouse trial, despite application of the products to plants before R. necatrix infection. Fluazinam suppressed WRR symptoms in plants when applied at the early stages of infection, whereas chloropicrin rendered the pathogen nonviable when used as a preplant treatment. Plants treated with Trichoderma, B-Rus, and fluazinam sustained dry mass production and net CO2 assimilation by maintaining the green leaf tissues despite being infected with the pathogen. This study has important implications for the integrated management of WRR.


Sign in / Sign up

Export Citation Format

Share Document