scholarly journals Phenotypic Diversity Assessment of Guava (Psidium guajava L.) Collection in Vietnam

Author(s):  
Dang Quang Bui ◽  
Trung Duc Tran ◽  
Ha Thi My Le ◽  
Tuyet Thi Nguyen ◽  
Yen Thi Oanh Tran

Background: Guava (Psidium guajava L.) is an important cultivated fruit crop in Vietnam due to its commercial value for fresh consumption and especially for fruit processing industry. A large number of diverse guava accessions, both indigenous and exotic, are available in Vietnam but their characterization, which is needed to identify targeted guava accessions for breeding programs, is still limited.Methods: The phenotypic variation and relationship among 40 guava accessions collected across Vietnam were assessed employing leaf and fruit morphological and physiological characterizations.Result: Range of variation for different leaf and fruit parameters were recorded. Significant correlations between leaf and fruit traits relating to yield and fruit quality were also observed implying a possibility of their simultaneous or interchangeable use in selection. Furthermore, the dendrogram generated from agglomeration hierarchical clustering grouped the 40 guava accessions into four major clusters which are highly associated with their origins. The result indicated that existing guava accessions are an important source of genetic diversity and can be used in the guava improvement program in Vietnam.

2019 ◽  
Vol 17 (5) ◽  
pp. 412-420
Author(s):  
G. Afolayan ◽  
S. P. Deshpande ◽  
S. E. Aladele ◽  
A. O. Kolawole ◽  
I. Angarawai ◽  
...  

AbstractSorghum (Sorghum bicolor (L.) Moench) is an important resource to the national economy and it is essential to assess the genetic diversity in existing sorghum germplasm for better conservation, utilization and crop improvement. The aim of this study was to evaluate the level of genetic diversity within and among sorghum germplasms collected from diverse institutes in Nigeria and Mali using Single Nucleotide Polymorphic markers. Genetic diversity among the germplasm was low with an average polymorphism information content value of 0.24. Analysis of Molecular Variation revealed 6% variation among germplasm and 94% within germplasms. Dendrogram revealed three groups of clustering which indicate variations within the germplasms. Private alleles identified in the sorghum accessions from National Center for Genetic Resources and Biotechnology, Ibadan, Nigeria and International Crop Research Institute for the Semi-Arid Tropics, Kano, Nigeria shows their prospect for sorghum improvement and discovery of new agronomic traits. The presence of private alleles and genetic variation within the germplasms indicates that the accessions are valuable resources for future breeding programs.


2015 ◽  
Vol 1 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Ahasanul Hoque ◽  
Shamsun Nahar Begum ◽  
Lutful Hassan

Diversity at molecular level among thirty rice genotypes, selected based on earliness and morphometric diversity was evaluated through five SSR markers associated with days to heading. Three primers viz., RM147, RM167 and RM215 showed polymorphism for growth duration related traits. A total of 17 alleles were detected among the 30 rice genotypes with an average of 5.66 alleles per locus. Polymorphism Information Content (PIC) ranged from 0.356 to 0.798 with an average of 0.543. A dendrogram based on total microsatellite polymorphism grouped 30 genotypes into four major clusters at 0.39 similarity coefficient differentiating early maturing genotypes from others. This information about the genetic diversity will be very useful for proper identification and selection of appropriate parents for future breeding programs, including gene mapping. The results also showed that microsatellite markers associated to genes or QTLs controlling growth duration properties are suitable tools for marker assisted selection (MAS) to select rice lines with short growth duration. DOI: http://dx.doi.org/10.3329/ralf.v1i1.22354 Res. Agric., Livest. Fish.1(1): 37-46, Dec 2014


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Fekadu Gadissa ◽  
Meskerem Abebe ◽  
Tesfaye Bekele

Abstract Background Cultivated barley (Hordeum vulgare L.) is one of the world’s important cereal crops. Ethiopia is claimed to be the centre of origin due to its high phenotypic diversity and flavonoid patterns. It is widely cultivated on subsistence bases and important in supporting the livelihood of local poor. However, the local landraces are currently under threat of severing genetic erosion. Hence, assessing the extents of its genetic diversity is timely in improvement and conservation. Methodology 120 representative cultivated barley landraces have been collected from Bale highlands, Ethiopia, and tested at two locations using alpha lattice design. Data were collected on 21 agro-morphometric traits and analysed using MINITAB 19, SAS 9.4 and FigTree v1.4.3. Results Most morphotypes in each of the qualitative traits considered and mean performance values in most of the quantitative traits revealed wide range of variations suggesting existence of phenotypic diversity among the landraces. Analysis of variance also showed significant variations among the landraces. All the traits, except days to maturity and plant height showed a significant variation for location and treatment-location interactions revealing the high impact of environmental conditions on the variations. Estimates of the variance components also revealed a wider range of variations in most of the traits considered with eventual medium to low genotypic (GCV), phenotypic (PCV) and genotype–environment coefficients of variation (GECV). Estimates of heritability in broad sense (H2) is low (< 40%) in all the traits except in days to maturity. Grouping of the landraces showed poor geographic areas of collection-based pattern suggesting extensive gene flow among the areas. Conclusion The landraces evaluated in the present study showed high morphological diversity. However, the effect of environment factor is pronounced and thus, multiple locations and years with large number of samples must be considered to exploit the available genetic-based variations for breeding and conservation of the crop.


2011 ◽  
Vol 33 (2) ◽  
pp. 517-525 ◽  
Author(s):  
Moeses Andrigo Danner ◽  
Idemir Citadin ◽  
Simone Aparecida Zolet Sasso ◽  
Silvia Scariot ◽  
Giovani Benin

Knowledge on the genetic diversity within and between genotype groups is of great importance for breeding programs. The purpose of this study was to estimate the genetic dissimilarity among 36 native jabuticaba trees (Plinia cauliflora) from five sites in the southwestern region of Paraná, Brazil. Sixteen fruit traits were analyzed, based on multivariate techniques (canonical variables, Tocher and UPGMA), using Mahalanobis' distance as dissimilarity measure. By the techniques of clustering and graphic dispersion, together with the comparison of means, the genetic diversity among native jabuticaba trees was efficiently identified, indicating a high potential of these genotypes for breeding programs. The traits of greatest importance for dissimilarity were percentage of pulp and of skin, which are easily measured. The clustering structure is related to the collection sites and for breeding programs, genotypes from different sites should be crossed to generate progenies to be tested. Genotypes 'CV5' and 'VT3' should be conserved in genebanks, due to its important agronomic traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Guo ◽  
Chunyan He ◽  
Fangyun Cheng ◽  
Yuan Zhong ◽  
Xinyun Cheng ◽  
...  

Allelic variation in floral quantitative traits, including the elements of flowers and fruits, is caused by extremely complex regulatory processes. In the genetic improvement of flare tree peony (Paeonia rockii), a unique ornamental and edible oil woody species in the genus Paeonia, a better understanding of the genetic composition of these complex traits related to flowers and fruits is needed. Therefore, we investigated the genetic diversity and population structure of 160 P. rockii accessions and conducted single-marker association analysis for 19 quantitative flower and fruit traits using 81 EST-SSR markers. The results showed that the population had a high phenotypic diversity (coefficients of variation, 11.87–110.64%) and a high level of genetic diversity (mean number of alleles, NA = 6.09). These accessions were divided into three subgroups by STRUCTURE analysis and a neighbor-joining tree. Furthermore, we also found a low level of linkage disequilibrium between these EST-SSRs and, by single-marker association analysis, identified 134 significant associations, including four flower traits with 11 EST-SSRs and 10 fruit traits with 32 EST-SSRs. Finally, based on the sequence alignment of the associated markers, P280, PS2, PS12, PS27, PS118, PS131, and PS145 may be considered potential loci to increase the yield of flare tree peony. These results laid the foundation for further analysis of the genetic structure of some key traits in P. rockii and had an obvious potential application value in marker-assisted selection breeding.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ademola Aina ◽  
Ana Luísa Garcia-Oliveira ◽  
Christopher Ilori ◽  
Peter L. Chang ◽  
Muyideen Yusuf ◽  
...  

Abstract Background African Yam Bean (AYB) is an understudied and underutilized tuberous legume of tropical West and Central African origin. In these geographical regions, both seeds and tubers of AYB are important components of people’s diets and a potential target as a nutritional security crop. The understanding of the genetic diversity among AYB accessions is thus an important component for both conservation and potential breeding programs. Results In this study, 93 AYB accessions were obtained from the International Institute of Tropical Agriculture (IITA) genebank and genotyped using 3722 SNP markers based on Restriction site-Associated DNA sequencing (RAD-Seq). Genetic data was analysed using multiple clustering methods for better understanding the distribution of genetic diversity across the population. Substantial genetic variability was observed in the present set of AYB accessions and different methodologies demonstrated that these accessions are divided into three to four main groups. The accessions were also analysed for important agronomic traits and successfully associated with their genetic clusters where great majority of accessions shared a similar phenotype. Conclusions To our knowledge, this is the first study on predicting genotypic-phenotypic diversity relationship analysis in AYB. From a breeding perspective, we were able to identify specific diverse groups with precise phenotype such as seed or both seed and tuber yield purpose accessions. These results provide novel and important insights to support the utilization of this germplasm in AYB breeding programs.


Author(s):  
Yolanda del Rocio Moreno-Ramírez, Amalio Santacruz-Varela ◽  
Pedro A. López, Higinio López-Sánchez ◽  
L. Córdova-Téllez, V. A. González-Hernández, T. Corona-Torres ◽  
Ricardo López- Ortega

Guajillo (Capsicum annuum L.) is one of the five more important chile types used as food in Mexico and the most important to local economy in Zacatecas, whose production is supplied mainly by native populations. In spite of this, not much is known about the morphological diversity of Guajillo landraces of Zacatecas. Here, we describe and quantify their morphological variation in order to establish breeding programs and to preserve the phenotypic diversity. Thirty-two plant, flower, fruit, seed and phenological traits were assessed in 96 Guajillo chile landraces and four improved varities of Guajillo used as controls, grown during the 2015 agricultural cycle in Zacatecas, Mexico. The selection of variables was made based on the analysis of variance and multivariate analysis that were applied to the selected variables to estimate the morphological diversity. A wide variation of plant, fruit and seed characteristics was identified. This morphological heterogeneity is attributed mainly to fruit traits such as: size, weight, shape, color, transverse wrinkling of the fruit, shape of the peduncle and the number of fruits produced. This wide morphological diversity can potentially be utilized in the genetic improvement of Guajillo chile.


Author(s):  
Jedidah Wangari Mwangi ◽  
Oduor Richard Okoth ◽  
Muchemi Peterson Kariuki ◽  
Ngugi Mathew Piero

Abstract Background Mung bean is a pulse crop principally grown in the tropic and subtropic parts of the world for its nutrient-rich seeds. Seven mung beans accessions from Eastern Kenya were evaluated using thirteen phenotypic traits. In addition, 10 SSR markers were used to determine their genetic diversity and population structure. This aimed at enhancing germplasm utilization for subsequent mung bean breeding programs. Results Analysis of variance for most of the phenology traits showed significant variation, with the yield traits recording the highest. The first three principal components (PC) explained 83.4% of the overall phenotypic variation, with the highest (PC1) being due to variation of majority of the traits studied such as pod length, plant height, and seeds per pod. The dendogram revealed that the improved genotypes had common ancestry with the local landraces. The seven mung beans were also genotyped using 10 microsatellite markers, eight of which showed clear and consistent amplification profiles with scorable polymorphisms in all the studied genotypes. Genetic diversity, allele number, and polymorphic information content (PIC) were determined using powermarker (version 3.25) and phylogenetic tree constructed using DARWIN version 6.0.12. Analysis of molecular variance (AMOVA) was calculated using GenALEx version 6.5. A total of 23 alleles were detected from the seven genotypes on all the chromosomes studied with an average of 2.875 across the loci. The PIC values ranged from 0.1224 (CEDG056) to 0.5918 (CEDG092) with a mean of 0.3724. Among the markers, CEDG092 was highly informative while the rest were reasonably informative except CEDG056, which was less informative. Gene diversity ranged from 0.1836 (CEDG050) to 0.5102 (CDED088) with an average of 0.3534. The Jaccards dissimilarity matrix indicated that genotypes VC614850 and N26 had the highest level of dissimilarity while VC637245 and N26 had lowest dissimilarity index. The phylogenetic tree grouped the genotypes into three clusters as revealed by population structure analysis (K = 3), with cluster III having one unique genotype (VC6137B) only. AMOVA indicated that the highest variation (99%) was between individual genotype. In addition, marker traits association analysis revealed 18 significant associations (P < 0.05). Conclusion These findings indicate sufficient variation among the studied genotypes that can be considered for germplasm breeding programs.


Genome ◽  
2008 ◽  
Vol 51 (7) ◽  
pp. 492-500 ◽  
Author(s):  
Juan E. Zalapa ◽  
Johanne Brunet ◽  
Raymond P. Guries

Elm breeding programs worldwide have relied heavily on Asian elm germplasm, particularly Ulmus pumila , for the breeding of Dutch elm disease tolerant cultivars. However, the extent and patterning of genetic variation in Asian elm species is unknown. Therefore, the objective of this research was to determine the extent of genetic diversity among 53 U. pumila accessions collected throughout the People’s Republic of China. Using 23 microsatellite loci recently developed in the genus Ulmus , a total of 94 alleles were identified in 15 polymorphic and 4 monomorphic loci. The average number of alleles per locus was 4.9, with a range of 1–11 alleles. Gene diversity estimates per locus ranged from 0.08 to 0.87, and the non-exclusion probability for the 15 polymorphic loci combined was 0.7 × 10−9. Nineteen region-specific alleles were identified, and regional gene diversity estimates were moderately high (0.48–0.57). The genetic relationships among accessions and regions were estimated by UPGMA and principal coordinate analysis. Both techniques discriminated all accessions and regions. Two microsatellite markers (UR175 + UR123 or Ulm-3) were sufficient to discriminate up to 99.7% of the accessions studied. This research provides useful information for DNA-based fingerprinting, breeding, ecological studies, and diversity assessment of elm germplasm.


2021 ◽  
Vol 42 (3Supl1) ◽  
pp. 1785-1796
Author(s):  
Angela Maria Urrea-Rojas ◽  
◽  
Annaiza Braga Bignardi ◽  
Felipe Pinheiro de Souza ◽  
Ed Christian Suzuki de Lima ◽  
...  

The implementation of fish breeding programs in Brazil has brought significant results in the productivity of tilapia. However, the insertion of native species with great potential (such as Tambaqui Colossoma macropomum) in these programs is still recent, and thus requires genetic information for monitoring and enabling their consolidation into the programs. The objective of the present study was to evaluate the genetic diversity of the parental generation (G0) and two consecutive generations (G1 and G2) in the C. macropomum genetic improvement program, located in the municipality of Sorriso, Mato Grosso, Brazil. Ninety caudal fin samples were collected (30 samples per generation) for DNA extraction. The genetic study implemented seven microsatellite markers (Cm1A8, Cm1A11, Cm1D1, Cm1E3, Cm1F4, Cm1F5, and Cm1H8). A total of 17 alleles were amplified, with variations in the mean number between four to two alleles per locus. The size per locus ranged from 170 to 360 bp. The average inbreeding coefficient was 0.126 (G0), -0.040 (G1), and 0.131 (G2). No null or exclusive alleles were found. The observed heterozygosity values for G1 and G2 demonstrated the preservation of genetic variability (0.453 and 0.409, respectively). In conclusion, the genetic diversity of the parental generation (G0) and the two progenies generations (G1 and G2) were adequate, which demonstrates that the genetic improvement program was conducted correctly; however, it is important to continue to evaluations the genetic diversity of the future progeny.


Sign in / Sign up

Export Citation Format

Share Document