Prediction of unsaturated soil hydraulic conductivity using air permeability: Regression approach

Author(s):  
Mohammad Reza Neyshaboury ◽  
Mehdi Rahmati ◽  
Seyed Alireza Rafiee Alavi ◽  
Hosein Rezaee ◽  
Amirhosein Nazemi

A close correlation between water conductivity (<italic>K(θ)</italic>) and air permeability (<italic>K</italic><sub><italic>a</italic></sub>), measured at various water contents, is expected due to tight dependence of water filled porosity to air filled porosity of soils. Finding such a relation will greatly facilitate the prediction of unsaturated water conductivity (<italic>K(θ)</italic>). So, the purpose of the current investigation was to find out if a reliable relation or function between the two permeabilities can be established. In this regard, <italic>K(θ)</italic> and <italic>K</italic><sub><italic>a</italic></sub> were measured by pressure plate outflow and variable head methods, respectively, at the range of 0 to -100 kPa matric potential (<italic>ψ</italic><sub><italic>m</italic></sub>). A linear regression function between relative water conductivity (<italic>K</italic><sub><italic>r</italic></sub>(<italic>θ</italic>)) and <italic>K</italic><sub><italic>a</italic></sub> (<italic>LogK</italic><sub><italic>r</italic></sub> (<italic>θ</italic>)=<italic>a</italic>+<italic>bLogK</italic><sub><italic>a</italic></sub>) with the correlation coefficient (<italic>R</italic>) from 0.884 to 0.999 were established for the 22 examined soils. The overall <italic>R</italic> for 128 data pairs (<italic>K</italic><sub><italic>r</italic></sub>(<italic>θ</italic>) and <italic>K</italic><sub><italic>a</italic></sub>) became 0.821 (being significant at <italic>P</italic><0.01) with the slope (<italic>b</italic>) of -2.54 and intercept (<italic>a</italic>) of -10.93. For the comparison propose <italic>K</italic><sub><italic>r</italic></sub>(<italic>θ</italic>) were also predicted from RETC using experimental SMC data and van Genuchten and Brooks-Corey models. The reliability of the <italic>K</italic><sub><italic>r</italic></sub>(<italic>θ</italic>) prediction from <italic>K</italic><sub><italic>a</italic></sub> based on root mean square error (RMSE), geometric mean error ratio (GMER), and geometric standard deviation of error ratio (GSDER) criteria became considerable greater than those predicted from the two mentioned models.

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Chin-Ping Lin ◽  
Yu-Min Wang ◽  
Samkele S. Tfwala ◽  
Ching-Nuo Chen

Taiwan, because of its location, is a flood prone region and is characterised by typhoons which brings about two-thirds to three quarters of the annual rainfall amount. Consequently, enormous flows result in rivers and entrain some fractions of the grains that constitute the riverbed. Hence, the purpose of the study is to quantify the impacts of these enormous flows on the distribution of grain size in riverbeds. The characteristics of riverbed material prior to and after the typhoon season are compared in Shi-Wen River located at southern Taiwan. These include grain size variation, bimodality, and roughness coefficient. A decrease (65%) and increase (50%) in geometric mean size of grains were observed for subsurface and surface bed material, respectively. Geometric standard deviation decreased in all sites after typhoon. Subsurface material was bimodal prior to typhoons and polymodal after. For surface material, modal class is in the gravel class, while after typhoons it shifts towards cobble class. The reduction in geometric mean resulted to a decrease in roughness coefficient by up to 30%. Finally, the relationship of Shields and Froude numbers are studied and a change in the bed form to antidunes and transition form is observed, respectively.


2017 ◽  
Author(s):  
Duseong S. Jo ◽  
Rokjin J. Park ◽  
Jaein I. Jeong ◽  
Gabriele Curci ◽  
Hyung-Min Lee ◽  
...  

Abstract. Single Scattering Albedo (SSA), the ratio of scattering efficiency to total extinction efficiency, is an essential parameter used to estimate the Direct Radiative Forcing (DRF) of aerosols. However, SSA is one of the large contributors to the uncertainty of DRF estimations. In this study, we examined the sensitivity of SSA calculations to the physical properties of absorbing aerosols, in particular, Black Carbon (BC), Brown Carbon (BrC), and dust. We used GEOS-Chem 3-D global chemical transport model (CTM) simulations and a post-processing tool for the aerosol optical properties (FlexAOD). The model and input parameters were evaluated by comparison against the observed aerosol mass concentrations and the Aerosol Optical Depth (AOD) values obtained from global surface observation networks such as the global Aerosol Mass Spectrometer (AMS) dataset, the Surface Particulate Matter Network (SPARTAN), and the Aerosol Robotic Network (AERONET). The model was generally successful in reproducing the observed variability of both the Particulate Matter 2.5 μm (PM2.5) and AOD (R ~ 0.76) values, although it underestimated the magnitudes by approximately 20 %. Our sensitivity tests of the SSA calculation revealed that the aerosol physical parameters, which have generally received less attention than the aerosol mass loadings, can cause large uncertainties in the resulting DRF estimation. For example, large variations in the calculated BC absorption may result from slight changes of the geometric mean radius, geometric standard deviation, real and imaginary refractive indices, and density. The inclusion of BrC and observationally-constrained dust size distributions also significantly affected the SSA, and resulted in a remarkable improvement for the simulated SSA at 440 nm (bias was reduced by 44–49 %) compared with the AERONET observations. Based on the simulations performed during this study, we found that the global aerosol direct radiative effect was increased by 10 % after the SSA bias was reduced.


2005 ◽  
Vol 5 (1) ◽  
pp. 57-66 ◽  
Author(s):  
P. Mönkkönen ◽  
I. K. Koponen ◽  
K. E. J. Lehtinen ◽  
K. Hämeri ◽  
R. Uma ◽  
...  

Abstract. Diurnal variation of number size distribution (particle size 3-800nm) and modal parameters (geometric standard deviation, geometric mean diameter and modal aerosol particle concentration) in a highly polluted urban environment was investigated during October and November 2002 in New Delhi, India. Continuous monitoring for more than two weeks with the time resolution of 10min was conducted using a Differential Mobility Particle Sizer (twin DMPS). The results indicated clear increase in Aitken mode (25-100nm) particles during traffic peak hours, but towards the evenings there were more Aitken mode particles compared to the mornings. Also high concentrations of accumulation mode particles (>100nm) were detected in the evenings only. In the evenings, biomass/refuse burning and cooking are possible sources beside the traffic. We have also shown that nucleation events are possible in this kind of atmosphere even though as clear nucleation events as observed in rural sites could not be detected. The formation rate of 3nm particles (J3) of the observed events varied from 3.3 to 13.9cm-3s-1 and the growth rate varied from 11.6 to 18.1nmh-1 showing rapid growth and high formation rate, which seems to be typical in urban areas.


Author(s):  
Jing Chen

AbstractFrom 2007 to 2013, simultaneous radon (222Rn) and thoron (220Rn) measurements were conducted in a total of 3534 residential homes in 34 metropolitan areas covering 71% of the Canadian population. While radon levels were above the detector’s detection limit in almost all homes, thoron concentrations were measurable in only 1738 homes. When analysis was limited to homes where thoron concentrations exceeded the detection limit, a pooled analysis confirmed that thoron is log-normally distributed in the indoor environment, and the distribution was characterized by a population-weighted geometric mean of 13 Bq/m3 and a geometric standard deviation of 1.89. Thoron contribution to indoor radon dose varied widely, ranging from 1.3 to 32% geographically. This study indicated that on average, thoron contributes 4% of the radiation dose due to total indoor radon exposure (222Rn and 220Rn) in Canada.


2021 ◽  
Vol 19 (7) ◽  
pp. 192-202
Author(s):  
Ahel El Haj Chehade, MD ◽  
Jesintha Stephenson, MD ◽  
Evan Floyd, PhD ◽  
Jean Keddissi, MD, FCCP ◽  
Tony Abdo, MD ◽  
...  

Introduction: Having an adequate supply of personal protective equipment during the COVID-19 pandemic has been a constant challenge for hospitals across the United States. In the event of shortages, our assembled mask might offer noninferior protection compared to an N95 respirator. Objective: To study the ability of an assembled mask to pass a quantitative fit testing.Methods: We conducted a feasibility study at the Oklahoma City Veteran Affairs Health Care System. Volunteers were fitted with an assembled mask made of either a Hans Rudolph half-face mask or a Respironics Performax full-face mask, attached to an Iso-Gard HEPA light Filter 28022 through a Performax SE elbow hinge. Quantitative fit testing was conducted using the Occupation Safety and Health Administration fit testing protocol. The primary outcome was the percentage of participants who pass the quantitative fit test. Secondary outcomes included the overall fit factor (FF), average FF for different exercises, changes in pulse oximetry and endtidal CO2 at 0 and 15 minutes, willingness to use the mask, and visibility assessment.Results: Twenty participants completed the study, and all (100 percent) passed the quantitative fit testing. The overall FF had a geometric mean of 2,317 (range: 208-16,613) and a geometric standard deviation of 3.8. The lowest FF was recorded while the subjects were talking. Between time 0 and 15 minutes, there was no clinically significant change in pulse oximetry and end-tidal CO2 levels. Most participants reported “very good” visibility and were “highly likely” to use the Hans Rudolph half-face mask in the case of shortage.Conclusion: Our assembled respirator offers noninferior protection to N95 respirators in the setting of hypothetical protective equipment shortage.


2019 ◽  
Vol 153 (4) ◽  
pp. 530-536 ◽  
Author(s):  
John Jeongseok Yang ◽  
Yousun Chung ◽  
Hyungsuk Kim ◽  
Dae-Hyun Ko ◽  
Sang-Hyun Hwang ◽  
...  

Abstract Objectives We reanalyzed the data from proficiency testing (PT) to assess the effect of the geometric mean in the statistical analysis of immunohematologic data. Methods Using the five most recent anti–blood group antibody titer participant summary results, the geometric mean (GM) ±2 × geometric standard deviation (GSD) was used as the comparative consensus criterion to mode ±2 titers. Results Using the PT evaluation criterion of mode ±2 titers, the mean percentages of participants with acceptable results were 97.5% and 97.8% for anti-A and anti-D, respectively. When applying GM ±2 GSD, the mean percentages of acceptable results were 96.1% (anti-A) and 96.1% (anti-D). The percentages of responses included in each consensus criterion were lower using GM ±2 GSD, with a few exceptions. Conclusions Geometric means are more robust and precise in visualizing the central tendency. This method can improve the statistical robustness of PT evaluations.


1983 ◽  
Vol 26 ◽  
Author(s):  
M. Moss ◽  
G. M. Haseman

ABSTRACTThe room-temperature thermal conductivities of two kinds of tuff from the Nevada Test Site have been measured on a linear-heat-flow thermal comparator. The results are the basis for an empirical model of the conductivity of these rocks in the dry and water-saturated conditions as a function of porosity. Tuff is one medium being considered for nuclear waste disposal. Devitrified, non-zeolitized tuffs with 6-22% porosity, and non-welded, zeolitized tuffs with 24-35% porosity were examined. The empirical geometric mean model is used to characterize the porosity-dependent thermal conductivity. We consider the rock matrix conductivity and the effective fluid conductivity as adjustable parameters in fitting the model to data for saturated and dehydrated samples, separately. For each rock type, the fitted value of matrix conductivity is the same in both the saturated and dehydrated cases; 2.3 and 1.1 W/(m.K) for the non-zeolitized and zeolitized tuffs, respectively. The fitted values for fluid conductivities are different for the the zeolitized and non-zeolitized tuffs, but the ratio of fitted water conductivity to fitted gas conductivity is very nearly the same for both rock types. This permits the use of a single equation to predict with good accuracy the ratio of saturated to dry rock conductivity.


2018 ◽  
Vol 33 (3) ◽  
pp. 293-300
Author(s):  
Ayman Abdalla ◽  
Samy El-Gamal

Indoor radon concentrations in 33 dwellings in Arar city were measured using a CR-39 detector. This work is the first in the region and was done to assess the health risks. The exposure time was about 4 months, from May to September 2017. It was found that the indoor radon concentration changed in the range from 7.7 to 89.1 Bqm-3 with an overall average of 44.05 ? 6.21 Bqm-3 while the geometric mean is 39.51 Bqm-3 with a geometric standard deviation of 1.67. These values are within the acceptable level set by the International Committee for Radiation Protection. The annual effective dose received by the population of Arar was reported and it varied in the range 0.16 -1.82 mSv with an average value of 0.9 ? 0.16 mSv and the geometric mean is 0.81 mSv. The exposure to radon progeny was studied where the minimum, maximum, average, and geometric mean of exposure are 0.83?10-3, 9.63?10-3, 4.76 ? 0.67? 10-3 and 5.05?10-3 WLM, respectively. Finally, for the estimation of cancer risks, the excess lifetime cancer risk was investigated. Its average value was 3.7?10-3 which is relatively higher.


1999 ◽  
Vol 82 (2) ◽  
pp. 305-312 ◽  
Author(s):  
Cristina Aprea ◽  
Alberto Betta ◽  
Giovanni Catenacci ◽  
Andrea Lotti ◽  
Silvana Magnaghi ◽  
...  

Abstract The interlaboratory validation of analytical procedures for the assay of urinary 3,5,6-trichloro-2-pyridinol (TCP) in the general Italian population is reported. The determinations were performed by high-resolution gas chromatography (HRGS) with electron capture detection and HRGS with mass spectrometry (MS) in 2 laboratories. The urine samples were from 42 participants from 3 regions of Italy. The results were evaluated by interlaboratory quality control. Urinary TCP concentrations were above the detection limit (1.2 (μg/L) in 88% of the population, with a mean detectable concentration [GM (GSD)] of 2.8 (1.9) (μg/g creatinine (creat). (GM, geometric mean; GSD, geometric standard deviation.) The Mann-Whitney U test showed that wine consumption was a statistically significant variable (p &lt; 0.05) for urinary concentrations of TCP. Analysis of variance of the logarithm of urinary TCP versus wine consumption and diet showed a statistically significant fit. The model used explained 30% of the total variance: wine consumption and diet accounted for 37 and 17% respectively of the explained variance.


Sign in / Sign up

Export Citation Format

Share Document