Effect of water stress on morpho-physiological parameters of fenugreek (Trigonella foenum-graecum L.) genotypes

Author(s):  
S. N. Saxena ◽  
R. K. Kakani ◽  
L. K. Sharma ◽  
D. Agarwal ◽  
S. John ◽  
...  

An experiment was conducted to investigate the effect of moisture stress on morpho-physiological parameters, seed yield and total oil content of thirteen fenugreek genotypes grown under moisture stress at different growth stages. Fenugreek genotypes showed significant differences in plant fresh weight, shoot and root weight, shoot and root length, number of branches, number of pods and seed yield per plant. Chlorophyll content and water potential was found to be reduced under water stress. Genotypes showed variation in canopy temperature under non stress conditions which was narrowed under stress conditions. Water stress at flowering and post flowering stage increased the oil content from a minimum of 3.29% in AFg 6 to a maximum of 5.31 in AM 327-3.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Zare ◽  
Aghafakhr Mirlohi ◽  
Ghodratollah Saeidi ◽  
Mohammad R. Sabzalian ◽  
Ehsan Ataii

AbstractThis study aimed to investigate the effect of yellow and brown seed coat color of flax on lignan content, seed yield, and yield components under two contrasting environments of non-stress and water stress conditions. The water stress environment intensified the discrimination between the two seed color groups as the yellow seeded families had lower values for seed yield components under the water stress. Heritability and the genetic advance for seed yield were significantly higher in brown-seeded families than those of yellow-seeded ones at water stress conditions. Secoisolariciresinol diglucoside (SDG) as the chief lignan in flaxseed was more abundant in yellow-seeded families under the non-stress environment but under water stress conditions, it increased in brown seeded families and exceeded from yellow ones. Considering that the brown and yellow seed color families were full sibs and shared a similar genetic background but differed in seed color, it is concluded that a considerable interaction exists between the flax seed color and moisture stress concerning its effect on seed yield and yield components and also the seed SDG content. Brown-seeded genotypes are probably preferred for cultivation under water stress conditions for better exploitation of flax agronomic and nutritional potentials.


2015 ◽  
Vol 50 (7) ◽  
pp. 534-540 ◽  
Author(s):  
Cleber Morais Guimarães ◽  
Luís Fernando Stone ◽  
Adriano Pereira de Castro ◽  
Odilon Peixoto de Morais Júnior

Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.


1977 ◽  
Vol 89 (3) ◽  
pp. 663-666 ◽  
Author(s):  
N. Sionit

SummaryThe effects on seed yield of two levels of water stress at four stages of development were investigated in two varieties of sunflower, Krasnodarets and Record. The plants were grown from seed in large pots in an air-conditioned glasshouse at 26/20 °C and 70% relative humidity, with natural summer illumination. They were subjected to water stress before head formation, during head formation, during flowering, and during seed development.The leaf water potential of plants subjected to a water stress of – 16 bars returned to normal after rewatering, but plants subjected to – 23 bars did not return to their prestress level and some leaves died. A water stress of – 16 bars caused no significant reduction in dry weight of the vegetative structures, but stress at all stages of growth reduced seed yield. A water stress of – 23 bars reduced both total dry weight and seed yield at all stages of growth, seed yield being reduced more by a stress of – 23 bars than of – 16 bars. Oil content was slightly reduced by water stress.Water stress during anthesis reduced sunflower seed yield more than during later stages of development.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 830 ◽  
Author(s):  
Yan Liu ◽  
Xiaoli Wei

Dark septate endophytes (DSEs) are known to help host plants survive drought stress; however, how DSEs enhance host plant drought resistance under water stress conditions remains unclear. The objective of this study was to inoculate Ormosia hosiei seedlings with a DSE strain (Acrocalymma vagum) to investigate the effects of DSE inoculation on root morphology, ultrastructure, and the endogenous hormone content under drought stress conditions and to elucidate the drought resistance mechanism involved in the DSE–host-plant association. The inoculated seedlings were grown under three different soil water conditions (well watered—75% field water capacity, moderate water—55% field water capacity, or low water—35% field water capacity) for 114 days. Fresh root weight, root volume, root surface area, root fork, and root tip number were significantly higher in inoculated seedlings than in noninoculated seedlings. Furthermore, the root architecture of the inoculated seedlings changed from herringbone branching to dichotomous branching. Mitochondria and other organelles in root cells of inoculated seedlings remained largely undamaged under water stress, whereas organelles in root cells of noninoculated seedlings were severely damaged. The abscisic acid (ABA) and indole-3-acetic acid (IAA) content and IAA/ABA ratio of inoculated seedlings were significantly higher than those of noninoculated seedlings, whereas the content of gibberellic acid (GA) and the ratios of GA/ABA, zeatin riboside (ZR)/ABA, and ZR/IAA in inoculated seedlings were lower than those of noninoculated seedlings. DSE inoculation could help plants adapt to a drought stress environment by altering root morphology, reducing ultrastructural damage, and influencing the balance of endogenous hormones, which could be of great significance for the cultivation and preservation of the O. hosiei tree.


2011 ◽  
Vol 39 (2) ◽  
pp. 153 ◽  
Author(s):  
Nourali SAJEDI ◽  
Hamid MADANI ◽  
Ahmad NADERI

This study was carried out to investigate effects of microelements under water deficit stress at different growth stages on antioxidant enzyme alteration, chemical biomarker and grain yield of maize in the years 2007 and 2008. The experiment was conducted in a split plot factorial based on a randomized complete block design with four replications. There were three factors, water deficit stress at different stages of growth as main plot and combinations of selenium (with and without using) and microelements (with and without using) as sub plots. The result indicated that the activity of superoxide dismutase and malondialdehyde content under water deficit stress increased, but grain yield was reduced. The highest grain yield was obtained from optimum irrigation, while in the case of with water deficit stress at V8 stage it was non significant. Selenium spray increased activity of superoxide dismutase enzyme, malondialdehyde content of leaves in V8, R2 and R4 stages and also grain yield. Application of microelements increased the leaves superoxide dismutase enzyme activity and malondialdehyde content. Selenium and microelements spray under water deficit stress conditions during vegetative growth and dough stage increased grain yield in comparison to not spraying elements under water stress conditions. The present results also showed that by using selenium and microelements under water stress can obtain acceptable yield compared to not using these elements.


Author(s):  
Agathos Filintas ◽  
Eleni Wogiatzi ◽  
Nikolaos Gougoulias

Abstract The aim of the present study was to determine the effects of rainfed and supplemental irrigation, and sowing period (SP) treatments on Coriander (Coriandrum sativum L.) yield, essential oil content and umbel heights by applying new agro-technologies (TDR-sensors for soil moisture (SM), GIS, Precision Agriculture, soil-hydraulic analyses and Geostatistical models) for yield and SM root zone geospatial modelling and two-dimensional GIS mapping. Results of laboratory analysis indicated a suitable soil for coriander's growth and revealed that field's soil was characterized Sandy Clay Loam(SCL) with mean values: Soil Organic Matter(SOM) = 1.70%, bulk specific gravity = 1.42 g·cm−3, Plant Available Water = 0.129 cm·cm−1, pH = 7.10 and cation-exchange capacity(CEC) = 19.3 cmol·kg−1. The two-way ANOVA statistical analysis (P = 0.05) results revealed that the irrigation treatments (IR1:rainfed, IR2:rainfed plus supplemental irrigation[best]), and the SP treatments (SP1:October's last week, SP2:November's first week[best]) significantly affects Coriander's seed yield and essential oil content, but the SP have no significant effect on plant's umbel height (P = 0.873). Supplemental irrigation, using a limited amount of water, if applied during the critical crop growth stages, can result in substantial improvement on seed yield (+284.934%), essential oil content (+125.396%) and plant's umbel height (+117.929%). HIGHLIGHT Geostatistical modelling on yield and oil of Coriander (Coriandrum sativum L.), GIS, Precision Agriculture, Rainfed cultivation with supplemental irrigation, Soil and hydraulic analyses, TDR-soil moisture mapping.


2018 ◽  
Vol 69 (11) ◽  
pp. 1150
Author(s):  
Mozhgan Abtahi ◽  
Mohammad Mahdi Majidi ◽  
Aghafakhr Mirlohi ◽  
Fatemeh Saeidnia

Polycross designs bridge the two usual mapping approaches (bi-parental mapping and association analysis) and increase mapping power by incorporating greater genetic diversity. In this study, we used diverse genotypes selected from polycrossed progenies to identify marker loci associated with a set of seed- and forage-related traits as well as drought tolerance in orchardgrass (Dactylis glomerata L.). Associations were estimated between phenotypic traits and 923 DNA markers (including 446 inter-simple sequence repeats and 477 sequence-related amplified polymorphism markers). Positive relationship was found between forage yield and seed yield under normal and water-stress conditions, indicating that simultaneous improvement of seed and forage yield could be achieved in orchardgrass. The results of population structure analysis identified five main subpopulations possessing significant genetic differences. Under normal and water-stress conditions, respectively, 341 and 359 markers were significantly associated with the studied traits. Most of these markers were associated with more than one trait. Water-environment specificity of trait-associated markers indicates that genotype × environment interactions influence association analysis. However, 75 stable associations were identified across two moisture conditions for traits such as seed and forage yield. Marker–trait association revealed that markers M1/E1-5, M2/E6-5, M3/E4-6, P14-7 and P845-7 were consistently linked with drought-tolerance index. The identified marker alleles associated with multiple traits across environments may be considered for further analysis for their chromosome locations, the corresponding sequences and their potential functions.


2012 ◽  
Vol 63 (6) ◽  
pp. 547 ◽  
Author(s):  
J. Kumar ◽  
P. S. Basu ◽  
E. Srivastava ◽  
S. K. Chaturvedi ◽  
N. Nadarajan ◽  
...  

Lentil is one of most important pulse crops in South Asia, and invariably encounters terminal moisture stress, leading to forced maturity and lower yield. A long and prolific root system is known to enhance capacity of the plant to extract water from the lower soil strata and thus help avoid the water stress. We assessed genetic variation for 12 traits among 43 lentil genotypes comprising improved varieties and promising breeding lines. The average root length at the 65-day plant stage ranged from 42 to 83 cm. Two genotypes (EC 208362 and VKS 16/11) with shorter root length and poor dry root weight (DRW) and three genotypes (DPL 53, JL 1, and IPL 98/193) with longer root length and high DRW were identified with stable performance over the years. Relationship of root traits with seed yield under rainfed conditions was non-significant in our study. The SPAD value (chlorophyll content) showed significantly positive correlation with DRW (r = 0.45**) and root length (r = 0.44**) and thus can be used as selection criterion for phenotyping root traits which are otherwise difficult to measure in the field. In drought-prone environments, early flowering and maturity, seedling vigour, and high SPAD value, biological yield, and harvest index were identified as key traits for higher seed yield in lentil. Our results revealed significant genetic variability for these traits in lentil germplasm. Indian genotypes adapted to rainfed conditions were shown to have longer roots and higher DRW. The three genotypes (DPL 53, JL 1, and IPL 98/193) identified with superior root traits either originated from or have in their ancestries at least one parent adapted to rainfed conditions. These genotypes can be utilised for the development of mapping populations to identify QTLs associated with these traits for marker-assisted breeding of drought-tolerant, high-yielding varieties of lentil.


Sign in / Sign up

Export Citation Format

Share Document