scholarly journals Audio module to capture, store and reproduce sound

Author(s):  
Jason Leitón-Jiménez Leitón Jiménez

This poster explains the design of an audio module, which is capable of capturing sound signals and storing them for later reproduction. The development platform is an embedded system (Beaglebone black), which has GPIO pins for user interaction. One of the objectives of the module is to keep production costs low, so the electronic components will be chosen taking quality criteria in operation as well as their cost. In the software component, the fdatool tool will be use to design the digital filter, getting the differences equation. It should be noted two major challenges that the development of this project has are the presence of noise in the analog signal and the sampling frequency with which the samples are taken to obtain the digital signal.

2014 ◽  
Vol 513-517 ◽  
pp. 4333-4337
Author(s):  
Li Qiu Jiang ◽  
Jian She Jin

In the process of physical therapy, it is usual to stimulate nerves or muscles of body with electrical signals through the electrodes, such as changeable square waves or sine waves, to control the corresponding functions or the action of muscular dilatation so as to relieve the pain of patients. On the basis of recent medical research, bell-like wave and exponential wave are most suitable for use. A digitalized medium frequency electronic therapeutic instrument based on the ARM embedded system is developed. The discrete bell-like wave and exponential wave are generated through the S3C2410 microprocessor, and then the digital signal is converted into analog signal through D/A converting chip. Finally the analog signal is amplified and output through power amplifying and isolated output circuit to generate the curing wave for human body. This method solved the difficulty of generating bell-like curing wave in traditional analog medium frequency electronic curing instrument.


2012 ◽  
Vol 460 ◽  
pp. 266-270
Author(s):  
Xing Wu Sun ◽  
Yu Chen ◽  
Ai Fei Wang

According to the shortcomings of large volume and high cost about the plate recognition system, an embedded plate recognition system is developed based on the ARM11 processor at lower costs. Taking the embedded Linux system as the software development platform, the system uses graphical user interface to operate and control the machine. Using CMOS camera system as image acquisition device, the system adopts HSV algorithm to realize the image classification on the platform of the embedded plate recognition system. The experimental results show that the embedded system runs stably, can realize the plate classification by color, and has the advantages of small size, low power consumption, convenience for using and so on. The embedded system provides a new thought for plate recognition.


2021 ◽  
pp. 108-114
Author(s):  
D.D. Privalov

The sampling rate at a given bit rate is a requirement for the speed of digital signal processors. In this regard, it is necessary to strive to reduce it in the development of electronic devices, especially portable ones. However, this can lead to an increase in the bit error rate during signal detection. Therefore, it is important to determine the degradation of signal detection with decreasing sampling frequency and to develop practical recommendations to ensure the specified quality of communication. The aim of the article is to study the influence of sampling frequency and interpolation on the bit error rate of GMSK Signal. The article considers the incoherent detection of a GMSK signal in a channel with additive white Gaussian noise, taking into account the influence of the clock synchronization error. Numerical results are presented that characterize an increase in the bit error rate with a decrease in the signal sampling frequency. It is shown that when using the cubic Farrow interpolator, there is no significant degradation in the bit error probability. The minimum number of samples per symbol is determined, at which the bit error rate is close to the theoretical values in the absence of synchronization error. The presented results can be used in development of wireless data transmission systems.


2014 ◽  
Vol 539 ◽  
pp. 79-83
Author(s):  
Chuan Ting Wei ◽  
Quan Li Ning ◽  
Dong Chen

In MATLAB software, it has FDATool toolbox, which can design digital filter specific according to specific circuit, and analyze the performance of the filter according to the parameters of filter. In this paper we establish simulation mathematical model of digital filter based on the calculation principle of distributed multiplication accumulator. According to the logic algorithm we design delay algorithm of digital filter, and use MATLAB software to do simulation on amplitude frequency and phase frequency of digital filter. After superposition of different sampling frequency wave we get new waveform, and realize the digital filter for the new wave. It proves the availability of mathematical model and the program, and provides the technical reference for the design of digital filter.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
A. Arifin ◽  
Nelly Agustina ◽  
Syamsir Dewang ◽  
Irfan Idris ◽  
Dahlang Tahir

This research discusses the polymer optical fiber sensor for respiratory measurements. The infrared LED that produces light will propagate along the polymer optical fiber which will be received by the phototransistor and the differential amplifier. The output voltage in the form of an analog signal will be converted to a digital signal by the Arduino Uno microcontroller and displayed on the computer. The polymer optical fiber sensor is installed on the corset using a variety of configuration (straight, sinusoidal, and spiral), placed in the abdomen, and a variety of positions (abdomen, chest, and back) using only a spiral configuration. While doing the inspiration, the stomach will be enlarged so that the optical fiber sensor will have strain. The strain will cause loss of power, the resulting light intensities received by the phototransistor are reduced, and the output voltage on the computer decreases. The result shows that the highest voltage amplitudes were in the spiral configuration placed in the abdominal position for slow respiration measurements with the highest range, sensitivity, and resolution which are 0.119 V, 0.238 V/s, and 0.004 s, respectively. The advantages of our work are emphasized on measurement system simplicity, low cost, easy fabrication, and handy operation and can be connected with the Arduino Uno microcontroller and computer.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988141990043
Author(s):  
Xiaochun Guan ◽  
Jianlin Huang ◽  
Tinglong Tang

The great development of robot vision represented by deep learning places urgent demands on embedded vision implementation. This article introduces a hardware framework for implementation of embedded vision based on digital signal processor, which can be widely used in robot vision applications. Firstly, the article discusses implementation of a pretrained typical convolutional neural network on the digital signal processor embedded system for real-time handwritten digit recognition. Then, the article introduces the migration of OpenCV software packages to digital signal processor embedded system and the implementation flow of face detection algorithms with OpenCV on digital signal processor. The experimental results are remarkable with convolutional neural networks for handwritten digit recognition. This article provides a convenient and feasible design scheme of digital signal processor system for implementation of embedded vision.


2019 ◽  
Vol 211 ◽  
pp. 04003 ◽  
Author(s):  
Shakir Zeynalov ◽  
Pavel Sedyshev ◽  
Valery Shvetsov ◽  
Olga Sidorova

The prompt neutron emission in thermal neutron induced fission of 235U and spontaneous fission of 252Cf was investigated by using digital signal electronics. The goal was to check a new revised data analysis software with fission fragment (FF) kinetic energy corrections after prompt fission neutron (PFN) emission. The revised software was used to reanalyze old data measured in EC-JRC-IRMM, where 252Cf(sf) reaction was investigated. Both measurements were done using similar twin Frisch grid ionization chamber for fission fragment detection with equivalent NE213 fast neutron detector. About 0.5*106 FF with PFN coincidences have been analyzed in both measurements. The fission fragment kinetic energy, mass and angular distribution were investigated along with prompt neutron time of flight and pulse shape analysis using a six channel synchronous waveform digitizer (WFD) with sampling frequency of 250 MHz and 12 bit resolution in the 235U(nth,f) reaction. Similar WFD with sampling frequency of 100 MHz was used for PFN investigation in 252Cf(sf) reaction. These two experiments were considered as a reference for further investigations with a new setup composed of position sensitive ionization chamber to detect FF and an array of 32 liquid scintillators recently constructed in Dubna to detect neutrons.


Sign in / Sign up

Export Citation Format

Share Document