scholarly journals Modified Model for Binary Nanofluid Convection with Initial Constant Nanoparticle Volume Fraction

2017 ◽  
Vol 10 (5) ◽  
pp. 1387-1395 ◽  
Author(s):  
J. Sharma ◽  
U. Gupta ◽  
V. Sharma ◽  
◽  
◽  
...  
2021 ◽  
Vol 19 (1) ◽  
pp. 1029-1046
Author(s):  
Abeer H. Bakhsh ◽  
Abdullah A. Abdullah

Abstract A linear stability analysis is performed for the onset of Marangoni convection in a horizontal layer of a nanofluid heated from below and affected by rotation. The top boundary of the layer is assumed to be impenetrable to nanoparticles with their distribution being determined from a conservation condition while the bottom boundary is assumed to be a rigid surface with fixed temperature. The motion of the nanoparticles is characterized by the effects of thermophoresis and Brownian diffusion. A modification model is used in which the effects of Brownian diffusion and thermophoresis are taken into consideration by new expressions in the nanoparticle mass flux. Also, material properties of the nanofluid are modelled by non-constant constitutive expressions depending on nanoparticle volume fraction. The steady-state solution is shown to be well approximated by an exponential distribution of the nanoparticle volume fraction. The Chebyshev-Tau method is used to obtain the critical thermal and nanoparticle Marangoni numbers. Different stability boundaries are obtained using the modified model and the rotation.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 970
Author(s):  
Mikhail A. Osipov ◽  
Alexey S. Merekalov ◽  
Alexander A. Ezhov

A molecular-statistical theory of the high frequency dielectric susceptibility of the nematic nanocomposites has been developed and approximate analytical expressions for the susceptibility have been obtained in terms of the effective polarizability of a nanoparticle in the nematic host, volume fraction of the nanoparticles and the susceptibility of the pure nematic phase. A simple expression for the split of the plasmon resonance of the nanoparticles in the nematic host has been obtained and it has been shown that in the resonance frequency range the high frequency dielectric anisotropy of the nanocomposite may be significantly larger than that of the pure nematic host. As a result, all dielectric and optical properties of the nanocomposite related to the anisotropy are significantly enhanced which may be important for emerging applications. The components of the dielectric susceptibility have been calculated numerically for particular nematic nanocomposites with gold and silver nanoparicles as functions of the nanoparticle volume fraction and frequency. The splitting of the plasmon resonance has been observed together with the significant dependence on the nanoparticle volume fraction and the parameters of the nematic host phase.


2020 ◽  
Vol 36 (4) ◽  
pp. 348-367 ◽  
Author(s):  
Marya Kanwal ◽  
Xinhua Wang ◽  
Hasan Shahzad ◽  
Yingchun Chen ◽  
Hui Chai

This article presents the blade coating analysis of viscous nanofluid passing over a porous substrate using a flexible blade coater. Water-based copper nanoparticles are considered to discuss the blade coating process. The lubrication approximation theory is applied to develop the flow equations. The analytical solution is obtained for velocity, volumetric flow rate, and pressure gradient, while shooting method is applied to obtain the pressure, thickness, and load. Different models for dynamic viscosity have been applied to observe the impact of related parameters on pressure, pressure gradient, and velocity. These results are presented graphically. Interesting engineering quantities such as load, deflection, and thickness are computed numerically and are shown in the tabulated form. It is found that nanoparticle volume fraction increases the pressure gradient, pressure and has minor effects on velocity. For model 1, an increase in the volume fraction reduces the coating thickness, load, and deflection, while model 2 has opposite effects on the mentioned quantities. Also, model 2 has a greater impact on pressure and pressure gradient when compared to model 1.


Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 739 ◽  
Author(s):  
Hao Ma ◽  
Zhipeng Duan ◽  
Liangbin Su ◽  
Xiaoru Ning ◽  
Jiao Bai ◽  
...  

The flow in channels of microdevices is usually in the developing regime. Three-dimensional laminar flow characteristics of a nanofluid in microchannel plate fin heat sinks are investigated numerically in this paper. Deionized water and Al2O3–water nanofluid are employed as the cooling fluid in our work. The effects of the Reynolds number (100 < Re < 1000), channel aspect ratio (0 < ε < 1), and nanoparticle volume fraction (0.5% < Φ < 5%) on pressure drop and entropy generation in microchannel plate fin heat sinks are examined in detail. Herein, the general expression of the entropy generation rate considering entrance effects is developed. The results revealed that the frictional entropy generation and pressure drop increase as nanoparticle volume fraction and Reynolds number increase, while decrease as the channel aspect ratio increases. When the nanoparticle volume fraction increases from 0 to 3% at Re = 500, the pressure drop of microchannel plate fin heat sinks with ε = 0.5 increases by 9%. It is demonstrated that the effect of the entrance region is crucial for evaluating the performance of microchannel plate fin heat sinks. The study may shed some light on the design and optimization of microchannel heat sinks.


2019 ◽  
Vol 16 (6) ◽  
pp. 791-805
Author(s):  
Atul Kumar Ray ◽  
Vasu B.

Purpose This paper aims to examine the influence of radiative nanoparticles on incompressible electrically conducting upper convected Maxwell fluid (rate type fluid) flow over a convectively heated exponential stretching sheet with suction/injection in the presence of heat source taking chemical reaction into account. Also, a comparison of the flow behavior of Newtonian and Maxwell fluid containing nanoparticles under the effect of different thermophysical parameters is elaborated. Velocity, temperature and nanoparticle volume fractions are assumed to have exponential distribution at boundary. Buongiorno model is considered for nanofluid transport. Design/methodology/approach The equations, which govern the flow, are reduced to ordinary differential equations using suitable transformation. The transformed equations are solved using a robust homotopy analysis method. The convergence of the homotopy series solution is explicitly discussed. The present results are compared with the results reported in the literature and are found to be in good agreement. Findings It is observed from the present study that larger relaxation time leads to slower recovery, which results in a decrease in velocity, whereas temperature and nanoparticle volume fraction is increased. Maxwell nanofluid has lower velocity with higher temperature and nanoparticle volume fraction when compared with Newtonian counterpart. Also, the presence of magnetic field leads to decrease the velocity of the nanofluid and enhances the skin coefficient friction. The existence of thermal radiation and heat source enhance the temperature. Further, the presence of chemical reaction leads to decrease in nanoparticle volume fraction. Higher value of Deborah number results in lower the rate of heat and mass transfer. Originality/value The novelty of present work lies in understanding the impact of fluid elasticity and radiative nanoparticles on the flow over convectively heated exponentially boundary surface in the presence of a magnetic field using homotopy analysis method. The current results may help in designing electronic and industrial applicants. The present outputs have not been considered elsewhere.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kh. Hosseinzadeh ◽  
So Roghani ◽  
A. Asadi ◽  
Amirreza Mogharrebi ◽  
D.D. Ganji

Purpose The purpose of this paper is to investigate micropolar magnetohydrodynamics (MHD) fluid flow passing over a vertical plate. Three different base fluids have been used that include water, ethylene glycol and ethylene glycol/water (50%–50%). Also, a nanoparticle was used in all of the base fluids. The effects of natural convection heat transfer and magnetic field have been taken into account. Design/methodology/approach The main purpose of solving the governing equations is to scrutinize the effects of the magnetic parameter, the nanoparticle volume fraction, micropolar parameter and nanoparticles shape factor on velocity, temperature and microrotation profiles, the skin friction coefficient and the Nusselt number. These surveys have been considered for three base fluids simultaneously. Findings The results indicate that for water-based fluids, the temperature profile of lamina-shaped nanoparticles is 38.09% higher than brick-shaped nanoparticles. Originality/value This paper provides micropolar MHD fluid flow analysis considering natural convection heat transfer and magnetic field in three different base fluids. The aim of assessments is the diagnosis of some parameter effects, such as magnetic parameter and nanoparticle volume fraction, on velocity, temperature and microrotation profiles and components. Also, the use of mixed base fluids presented as a novelty in this paper.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
D. A. Nield ◽  
A. V. Kuznetsov

The model developed in our previous paper (Nield and Kuznetsov, 2011, “The Effect of Vertical Throughflow on Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid,” Transp. Porous Media, 87(3), pp. 765–775) is now revised to accommodate a more realistic boundary condition on the nanoparticle volume fraction. The new boundary condition postulates zero nanoparticle flux through the boundaries. We established that in the new model, oscillatory instability is impossible. We also established that the critical Rayleigh number depends on three dimensionless parameters, and we derived these three parameters from the governing equations. We also briefly investigated the major trends.


2019 ◽  
Vol 8 (8) ◽  
pp. 1692-1703 ◽  
Author(s):  
Ali J. Chamkha ◽  
Hossam A. Nabwey ◽  
Z.M.A. Abdelrahman ◽  
A.M. Rashad

A mathematical model is accentuated the mixed bioconvective flow on a vertical wedge in a Darcy porous medium filled with a nanofluid containing both nanoparticles and gyrotactic microorganisms. Thermophoresis and Brownian motion impacts are addressed to consolidate energy and concentration equations with passivelycontrolled boundary conditions. A mixed convective parameter for the whole regime of the mixed convective is appointed. The system of governing partial differential equations is converted into a non-similar set, which are then solved by an implicit finite difference method. By taking the impacts of the varying pertinent parameters, namely, the bioconvection nanofluids and wedge angle parameters in the entire mixed convection regime, the numerical results are analyzed graphically for the dimensionless the velocity, temperature, nanoparticle volume fraction and the density motile microorganisms profiles as well as the local Nusselt and motile microorganism numbers.


Sign in / Sign up

Export Citation Format

Share Document