scholarly journals Response on Uptake of Nutrients and on Grain Yield from Rice Husk Biochar Application on Oryza sativa L. Grown in a Low Yielding Granary Area of Tanjung Karang, Selangor, Malaysia

2021 ◽  
Vol 9 (1) ◽  
pp. 38
Author(s):  
Deniel Anak Sang ◽  
Rosenani Abu Bakar ◽  
Siti Hajar Ahmad ◽  
Osumanu Haruna Ahmed ◽  
Wan Asrina Wan Yahya ◽  
...  

Rice (<em>Oryza sativa</em> L.) production plays a major role in enhancing food security in Malaysia. Lower rice yield and improper soil management practices have raised serious concerns about rice cultivation in Malaysia. The objective of this study was to examine the short-term effects of rice husk biochar (RHB) application on rice yields production on low yielding area for two crop cycles. RHB was applied at the rates of 0, 5, 10, and 20 Mg ha<sup>-1</sup>. Rice husk biochar was applied one week before rice seeds, of variety MR 263, were directly seeded. Results of the study showed that RHB significantly increased grain yield by 44% and 46% in first and second crop cycles, respectively, as compared to the control treatment. Likewise, RHB amended plots showed significant improvement of rice yield components, viz. productive tiller, panicle length, and weight per panicle, than those of the control plots in the first and second crop cycles. Furthermore, RHB significantly increased nitrogen (N), phosphorus (P) and potassium (K) uptake by 17%, 18%, 29%, respectively, in the first crop cycle, and 26%, 23%, 110%, respectively, in the second crop cycle. RHB application also significantly improved soil available P, exchangeable K and exchangeable Mg in the two crop cycles. Another interesting finding was that the use of RHB reduced soil total carbon loss by 4% to 12% compared with 19% by the control treatment. These findings suggest that RHB can potentially be used as a soil amendment to increase rice yield production, enhance soil nutrient availability and nutrient uptake, as well as reduce carbon losses especially during drought period.

2019 ◽  
Vol 3 (1) ◽  
pp. 81
Author(s):  
Saroj Thapa ◽  
Khagendra Thapa ◽  
Jiban Shrestha ◽  
Amit Chaudhary

Rice (Oryza sativa L.) is first staple crop of Nepal. The national average yield of rice is less than its potential yield, for which poor agronomic management has been reported as the critical factor. Among various agro-management practices seedling age, seeding density and nitrogen rates significantly affect the growth and yield of rice. The lower seeding density produces the taller plant, more effective tiller, lower sterility and higher grain yield. On the other hand, seedling of older age from higher seeding density gives the lowest yield. Transplanting younger seedling with low seeding density and application of recommended dose of nitrogen gives a higher yield. This article summarizes various effects of seedling age, seeding density and nitrogen rates on plant height, number of effective tillers, number of filled grains, thousand grain weight and grain yield of rice. This information may be useful for maize growers and researchers.


Weed Science ◽  
1997 ◽  
Vol 45 (1) ◽  
pp. 151-157 ◽  
Author(s):  
David L. Jordan

Research was conducted from 1993 through 1995 to evaluate barnyardgrass control, rice yield, and estimated economic return with POST applications of propanil or propanil + molinate applied alone or with quinclorac. Herbicides were applied under a variety of water management practices and environmental conditions at rates ranging from 1.1 to 3.4, 1.7 to 5.6, and 0.17 to 0.40 kg ai ha−1for propanil, propanil + molinate, and quinclorac, respectively. Reduced-rate combinations of propanil or propanil + molinate with reduced rates of quinclorac controlled small, actively growing barnyardgrass and provided yields and estimated economic returns similar to combinations of these herbicides at higher rates when irrigated. When herbicides were applied to larger barnyardgrass, propanil + molinate at 5.6 kg ha−1was more effective than propanil at 3.4 kg ha−1or quinclorac at 0.40 kg ha−1applied alone. Propanil + molinate applied with quinclorac at 0.28 or 0.40 kg ha−1controlled barnyardgrass more effectively and provided higher yields and greater estimated economic returns than propanil at 3.4 kg ha−1, propanil + molinate at 5.6 kg ha−1, quinclorac at 0.17, 0.28, or 0.40 kg ha−1, or combinations of propanil and quinclorac.


Author(s):  
Marco André Grohskopf ◽  
Juliano Corulli Corrêa ◽  
Dirceu Maximino Fernandes ◽  
Vinícius de Melo Benites ◽  
Paulo César Teixeira ◽  
...  

Abstract: The objective of this work was to evaluate the nutritional content and grain yield of three corn (Zea mays) crops in response to phosphate fertilization with an organomineral fertilizer based on poultry litter or a mineral fertilizer, when cultivated on a Rhodic Khandiudox with a high initial phosphorus content. The experiment was carried out in the field in a randomized complete block design in a 2×4+1 factorial arrangement (organomineral or mineral fertilizer × 20, 40, 60, or 80 kg ha-1 P + control treatment with no phosphate fertilization), with four replicates each. Available P and total organic carbon (TOC) contents in the soil at the end of the crop cycle, plant tissue P contents, and grain yield were determined. The agronomic efficiency index (AEI) was estimated based on corn grain yield. After three harvests, soil available P and TOC contents did not increase significantly due to fertilizer use, but were directly related to P doses. In a Rhodic Khandiudox with a high initial P content, the use of an organomineral fertilizer based on poultry litter promotes higher corn crop yield, with an AEI 20% higher than that of the mineral fertilizer.


2007 ◽  
Vol 43 (2) ◽  
pp. 149-161 ◽  
Author(s):  
SONU SINGH ◽  
NANDITA GHOSHAL ◽  
K. P. SINGH

A two-year study was undertaken in a tropical dryland agro-ecosystem to evaluate the effect of the application of soil amendments with contrasting chemical natures on crop productivity, grain yield, N-uptake and N-use efficiencies. The treatments involved the addition of equivalent amounts of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of the annual cycle: Sesbania aculeata shoots (high quality, C/N 16), wheat straw (low quality, C/N 82) and Sesbania+wheat straw (high and low quality combined, C/N 47), together with a control treatment. Test crops consisted of an annual sequence of rice and barley, sown in the rainy and winter seasons, respectively. Fertilizer and Sesbania inputs resulted in higher total net productivity (TNP) for the rice crop (47 % and 32 % increases over the control, respectively) than the combined (+28 %) and wheat straw treatments (+10 %). During the succeeding barley crop, maximum TNP was recorded in the Sesbania+wheat straw treatment (+52 %), followed by wheat straw (+43 %), fertilizer (+19 %) and Sesbania (+17 %). The TNP and grain yields of both crops added together were higher in Sesbania+wheat straw and fertilizer treatments compared to a single applications of either Sesbania or wheat straw. The Sesbania+wheat straw and fertilizer treatments resulted in more efficient utilization of N compared to the other treatments. Crop roots played a pivotal role in N-recovery from the soil and their N concentrations differed significantly (p < 0.05) due to the application of soil amendments. Across different treatments, crop root biomass was strongly correlated with crop N-uptake (r = 0.81, n = 10, p < 0.05), recovery efficiency (r = 0.81, n = 8, p < 0.05) and agronomic efficiency (r = 0.81, n = 8, p < 0.05). It is suggested that the combined application of high and low quality resources modulated N release, resulting in relatively higher productivity through the annual cropping cycle. Such combined inputs may prove useful in developing low input, environment friendly soil management practices in tropical dryland agro-ecosystems.


2020 ◽  
Vol 20 ◽  
pp. 01009
Author(s):  
Wahida Annisa ◽  
Evy Setiawati

Biochar improves soil quality physicochemical. Biochar is a soil amendment created through the burning of biomass, has a potential solution for wide-ranging environmental management problems. Biochar has been shown to have positive outcomes on soil function to sequester carbon to slow the effects of global climate change. The objective of this research was to study the impact of compost biochar in increasing rice yields in tropical swampland. The design used in this study was a randomized block design, including (1) biochom 1 (without harvest waste compost + without biochar rice husk), (2) Biochom 2 (harvest waste compost 5 t/ha), (3) biochom 3 (rice husk biochar 5 t/ha), (4) biochom 4 (a combination of harvest waste compost 2.5 t/ ha + rice husk biochar 2.5 t/ha). The results showed that application of biochom 4 (a combination of harvest waste compost 2.5 t/ha + rice husk biochar 2.5 t/ha) increased of rice yield reached 15.21% compared to biochom 2 treatment (compost harvest waste 5 t/ha) and reached 17.78% with biochom 3 treatment (rice husk biochar 5 t/ha), compost without biochar treatment.


1998 ◽  
Vol 12 (3) ◽  
pp. 537-541 ◽  
Author(s):  
David L. Jordan ◽  
J. Andrew Kendig

Field experiments were conducted to compare barnyardgrass control and rice grain yield following a single postemergence (POST) application of propanil plus clomazone with single or repeat POST applications of propanil alone or single POST applications of propanil plus pendimethalin, molinate, quinclorac, or thiobencarb. In four of 10 experiments, propanil plus clomazone controlled barnyardgrass better than single or repeat applications of propanil alone or single applications of propanil plus pendimethalin, molinate, quinclorac, or thiobencarb. The most consistent increase in rice yield over a single application of propanil occurred where clomazone was applied in mixture with propanil.


2016 ◽  
Vol 4 (2) ◽  
pp. 223-227
Author(s):  
S. Ranabhat ◽  
L.P. Amgain

A field experiment was conducted on farmer’s field at two sites of Lamjung district of Nepal viz. Bhotewodar and Sundarbazaar to evaluate the performance of two commonly grown rice varieties viz US-382(hybrid) and Ramdhan (improved) under two nutrient management practices [Nutrient Expert®(NE) rice model recommendation, and government recommendation(GR)].Four replicates of four treatments were arranged in randomized completely block design. Rice varieties responded differently under the different nutrient management practices in terms of plant height, grains per panicle, sterility%, panicle weight, grain yield at 15% moisture, straw yield and harvesting index. The highest grain yield was obtained from NE field of US-382 variety which was followed by GR for US-382, NE for Ramdhan and GR for Ramdhan variety. NE based practices for US-382 variety produced higher biological yield as compared to GR. NE estimated attainable rice yield provided by the software compared with actual rice yield from the trials in farmer’s field and NE-based fertilizer recommendations proved the validity in reaching the yield targets estimated by the software. The observed rice yields recorded in the trials were higher than the NE estimated attainable yields, so NE recommendation for US-382 variety was found better over GR.Int J Appl Sci Biotechnol, Vol 4(2): 223-227


Author(s):  
Neneng Laela Nurida ◽  
Sutono , ◽  
Muchtar ,

<p>Utilization of Biochar of Cocoa Shell and Rice Husk to Increase Rice Productivity in Ultisol Lampung. Biochar application as soil amendment is technology for soil and crop productivity improvement in acid soil. The main problem of acid soil including in paddy field is high concentration of Al3+ that inhibit crops growth causing low crop production. The objective of this study was to evaluate the effects of cocoa shell and rice husk biochar on paddy<br />field productivity and soil chemical properties. The study was conducted at Agricultural Research Station of Tamanbogo, East Lampung on June-September 2012 (planting season 1), January-April 2013 (planting season 2) and December 2013-March 2014 (planting season 3). The experimental design was split plot design, which the main plots<br />were two types of biochar (cacao shell and rice husk), the sub plots were biochar rates 0.5 t/ha (control), 5 t/ha and 15 t/ha with five replications. The parameters measured were paddy growth, yield and soil chemical properties (soil pH,C organic, N total, available P, K total, and Al3+ ). The result showed that biochar could affect weight of rice straw and<br />rice yield at the second and third planting season, while biochar rates could affect crop growth and yield of rice at three planting. The effect of cacao shell and rice husk biochar application with the rate of 15 t/ha could up to three planting seasons without any biochar addition in following two consecutives year, whereas addition biochar 5 t/ha was<br />less effective. The cacao shell biochar was more effective in increasing crop growth and yield than rice husk biochar,as seen on dry grain rice yield, i.e. 3.58 t/ha (PS1) and 5.06 t/ha (PS III). During two planting seasons, both biochar at the rate of 15 t/ha were sufficient to improve soil chemical properties. Cacao shell biochar with the rate of 15 t/ha had better effect in improving soil chemical properties significantly in term of soil pH, available P, and total K content and decreasing aluminum content than rice husk biochar especially at second planting season. </p><p>Keywords: lowland, biochar, rice, Ultisol, Lampung</p><p>ABSTRAK</p><p>Aplikasi biochar sebagai pembenah tanah merupakan salah satu teknologi untuk memperbaiki produktivitas tanah dan tanaman pada lahan masam. Permasalahan utama pada lahan masam adalah tingginya konsentrasi Fe3+ yang dapat menghambat pertumbuhan tanaman sehingga menyebabkan rendahnya produksi. Tujuan penelitian ini adalah untuk mempelajari pengaruh pemberian biochar kulit buah kakao dan sekam padi serta takarannya terhadap peningkatan sifat kimia tanah dan produktivitas padi sawah di Ultisol Lampung. Penelitian dilaksanakan pada lahan sawah di Kebun Percobaan Taman Bogo, Lampung selama tiga musim tanam yaitu bulan Juni-September 2012 (musim tanam pertama), bulan Januari-April 2013 (musim tanam kedua) dan Desember 2013 - Maret 2014 (musim tanam ketiga). Percobaan disusun dalam rancangan kelompok petak terpisah, sebagai petak utama terdiri dari biochar kulit buah kakao dan biochar sekam padi, sedangkan sebagai anak petak adalah takaran biochar yaitu tanpa biochar (kontrol 0 t/ha), 5 t/ha dan 15 t/ha, dengan 5 kali ulangan. Parameter yang diamati meliputi pertumbuhan dan hasil padi, sifat kimia tanah (pH, C-organik, N-total, P-tersedia, K-total dan Al3+ ). Hasil penelitian menunjukkan bahwa  jenis biochar hanya berpengaruh nyata terhadap berat jerami kering dan hasil gabah pada musim tanaman kedua dan ketiga, sedangkan takaran biochar berpengaruh nyata terhadap pertumbuhan dan hasil padi pada ke tiga musim tanam. Pengaruh pemberian biochar kulit buah kakao dan sekam padi 15 t/ha mampu bertahan sampai tiga musim tanam dilihat dari pertumbuhan dan hasil padi sawah, sedangkan pemberian biochar 5 t/ha bertahan satu musim saja. Efektivitas biochar kulit buah kakao dalam mendukung pertumbuhan dan hasil tanaman lebih tinggi dibandingkan sekam padi terlihat dari hasil gabah kering panen sebesar 3,58 t/ha (MT II) dan 5,06 t/ha (MT III). Selama dua musim tanam pemberian biochar kulit buah kakao sebanyak 15 t/ha juga mampu meningkatkan pH tanah, P tersedia, dan kandungan K tetapi menurunkan kandungan aluminium melebihi biochar sekam padi terutama pada musim tanam kedua.</p><p>Kata kunci: produktivitas, padi sawah, biochar, Ultisol</p>


Agriculture ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 793
Author(s):  
Mehnaz Mosharrof ◽  
Md. Kamal Uddin ◽  
Muhammad Firdaus Sulaiman ◽  
Shamim Mia ◽  
Shordar M. Shamsuzzaman ◽  
...  

Biochar, a pyrogenic carbon, has been receiving incremental attention for potential contribution to soil health, agricultural productivity enhancement while mitigating climate change by sequestering carbon and reducing greenhouse gas (GHG) emissions. However, it is not well-known to us how far rice husk biochar (RHB) application rates could increase phosphorus (P) bioavailability and plant performance when co-applied with P and lime. Here, we present data of a pot experiment consisting of eleven treatments to evaluate RHB, lime, and phosphorus effect on soil phosphorus availability, CO2 emission, nutrient uptake, and yield performance of maize. Co-application of RHB (10 and 15 t ha−1) and lime (100% and 75%) was made with different rates of P (100%, 75%, and 50%). Our result revealed that, at harvest, the combined application of RHB, lime, and phosphorus fertilizer significantly increased soil pH, P availability and decreased Al and Fe toxicity relative to the control while increasing maize yield. The maximum soil pH increased by 36.75%, the highest available P increased by 158.75%, whilst, the exchangeable Al content reduced by 96.84% compared to the control treatment. However, the difference in biomass production and yield among different lime, RHB, and P were minimal, with the largest grain yield (15.50 t ha−1) was recorded in the T6 treatments (75% lime + 10 t ha−1 RHB + 100% Triple superphosphate). The increment in biomass and grain yield could have occurred due to lime and RHB mediated changes in soil properties, including enhancement of soil pH, availability of P, and other nutrients. This increased availability then increased nutrient uptake and biomass production. Our results suggest that the combined application of lime and RHB could bring favorable changes in soil properties while sacrificing some carbon from soils.


Weed Science ◽  
1987 ◽  
Vol 35 (5) ◽  
pp. 686-690 ◽  
Author(s):  
Joe E. Street ◽  
Charles E. Snipes

A 4-yr study was conducted to evaluate the response of rice (Oryza sativaL. 'Starbonnet′) to sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl-3-hydroxy-2-cyclohexen-1-one}, haloxyfop {2-[4-[13-chloro-5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] propanoic acid}, fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl] oxy] phenoxy] propanoic acid}, and quizalofop {(±)-2-[4-(6-chloro-2-quinoxalynyloxy)phenoxy] propanoic acid}. In general, rice was more sensitive when herbicides were applied at panicle initiation than at the tillering stage of development. Quizalofop severely reduced rice yield when applied wih a surfactant. Applied at tillering, sethoxydim at 210 g ai/ha did not reduce rice height, grain yield, milling yield, or seed quality.


Sign in / Sign up

Export Citation Format

Share Document