scholarly journals SOIL PROPERTIES AND GROWTH PERFORMANCE OF RIZE (Oryza sativa L.) GROWN IN A FLY-ASH AMENDED SOIL

2015 ◽  
Vol 1 (1) ◽  
pp. 19-24
Author(s):  
Bambang J. Priatmadi ◽  
Akhmad R. Saidy ◽  
Meldia Septiana

al of Chemistry Volume 4(1):33-42. Artikel 3 Fly-ash (FA) is largely alkaline in nature and contains many essential elements for plant growth along with toxic metals. Therefore, fly-ash is potential to be applied as soil ameliorate that may improve soil properties and plant growth. In this experiment we studied the changes in chemical properties and rice production of acid sulphate soils amended with fly ash. Six different amounts of FA, viz. 0 (100% soil), 5, 10, 20, 40 and 75 tones FA ha-1 were added homogenously to 6 kg of soils in pots of PVC and then chemical properties of acid sulphate soils were observed after a 3-week of incubation. Subsequent of the observation of soil properties, rice was planted onto the pots. Results of study showed that fly-ash application improved soil pH and exchangeable Ca. However, the availability of nitrogen of acid sulphate soils decreased significantly with fly-ash application. The experiment also showed that fly-ash application to soils improved rice growth (height plant, number of tillers, dried-weight root and dried-weight shoot) and rice production. Application 20 tones FA ha-1 resulted in higher rice production than the application 0, 5 and 10 tones FA ha-1, and increasing subsequent the amount of FA application did not significantly increase the rice production. Results of this study demonstrate that low-level fly-ash application resulted in the improvements of soil chemical properties and rice production.

1995 ◽  
Vol 75 (3) ◽  
pp. 343-348 ◽  
Author(s):  
Christian Godbout ◽  
Jean-Louis Brown

A Podzolic soil from an old-growth maple hardwood forest in eastern Canada was systematically sampled from a 16.5-m-long trench in 1975. In 1986, the upper 10 cm of the B horizon was resampled from two sampling lines located on each side and parallel to the 1975 trench, one at a distance of 1 m downhill and the other at a distance of 4 m uphill. Total N, organic C, pH, and exchangeable Ca, Mg and K were measured. The objectives were to evaluate the change in the chemical status of the B horizon from 1975 to 1986 and to characterize the spatial variability of the horizon. No significant change was found in the soil chemical properties tested during this 11-yr period. No significant autocorrelation was observed between soil samples 60 cm apart, except for the downhill sampling line, which was located 1 m from the trench. For most properties, the magnitude of the difference between two soil sampling units was not proportional to the distance separating them over the range of 0.6–4.2 m. Except for pH, a difference in soil properties of more than 30% was observed in 37–56% of sample pairs 60 cm apart. Resampling near (1 m) an old soil pit may not be valid because of possible local modifications of soil properties created by the pit, even when it is filled in. Key words: Podzol, soil variability, acidic deposition, soil changes


Jurnal Solum ◽  
2008 ◽  
Vol 5 (1) ◽  
pp. 43
Author(s):  
Teguh Budi Prasetyo ◽  
Irwan Darfis ◽  
Rahmi Fitri

This research was conducted in greenhouse at Agriculture Faculty of Andalas University from August 2006 to February 2007.  The objective of the research was to study  the effect of fly ash as silicon (Si) resource for plant growth and rice production.  The experiment was designed on Completely Randomized Block Design in four treatments and three replicates.  The treatments consisted of without fly ash, 1400 kg/ha, 2800 kg/ha and 5600 kg/ha fly ash.  The results showed that fly ash could increase available fosfor, silica, cations and reduce Aluminium of the soil.  Fly ash could also increase production and absorbtion of fosfor and plant silicon.Key words :  Fly ash, silicon, and rice production


2001 ◽  
Vol 137 (3) ◽  
pp. 289-298 ◽  
Author(s):  
S. CHEYGLINTED ◽  
S. L. RANAMUKHAARACHCHI ◽  
G. SINGH

CERES-Rice model was used to simulate growth and yield of four common rice varieties in Thailand with the attention on rate and timing of N application, a factor that most limits crop yield. The model predicted slightly higher grain yield than that observed for all varieties at N input of 75 kg/ha, but the differences between observed and simulated yields were not significant, except for varieties HSP and SPR90. The simulated grain[ratio ]straw ratio was significantly higher than the observed value for all varieties except that of HSP. There was no significant difference between the simulated and observed values of days to flowering. Generally, the model reasonably predicted the phenology and yields of RD23 and KDML105 varieties. The model was also used to compare the yields of KDML105 variety as influenced by rate and timing of N application grown in acid sulphate soils. There was a variation in predicted biomass yield with applied N rates at 0 and 150 kg/ha, but timing of application had no effect. In Aeric Endoquept and Sulfic Tropaquept soils at Suphan Buri and Pathum Thani rice research stations, the yield patterns remained unchanged and showed a positive response to N rate up to 75 kg/ha. The model estimated higher grain yields beyond 75 kg N/ha while the observed yield decreased. Based on the simulated yields for a 10-year period at the Asian Institute of Technology (AIT), Pathum Thani, Suphan Buri, Nakhon Pathom and Ratcha Buri rice research stations the varieties were ranked as: SPR90 > RD23 = HSP > KDML105. The model suggested that SPR90 is the most suitable variety for the central plain and its potential yield ranges from 4030 to 5600 kg/ha. Pathum Thani province, with acid sulphate soils, had the lowest potential for rice production.


Jurnal Solum ◽  
2010 ◽  
Vol 7 (1) ◽  
pp. 1 ◽  
Author(s):  
Teguh Budi Prasetyo ◽  
Syafrimen Yasin ◽  
Edri Yeni

A research about use of coal ash as a silicate source for rice production was conducted in Greenhouse at Agriculture Faculty of Andalas University from October 2006 to February 2007.  The objective of this research was to study the effect of coal fly ash as silicon (Si) sources for the growth and production rice crops (Oryza sativa L.).  The experiment was designed on Completely Randomized Block Design with four treatments and three replications.  The treatments consist of ; 0 ton/ha, 20 ton/ha , 40 ton/ha  and 60 ton/ha coal fly ash.  The result showed that, fly ash from coal burning could increase  available fosfor and reduce dissolved aluminum in the soil.  Fly ash could also increase crop production, P- and Si-absorption by crops.Key Words: coal fly ash, silicate, rice crops


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


2017 ◽  
Vol 3 (4) ◽  
pp. 187 ◽  
Author(s):  
Arief Pambudi ◽  
Nita Noriko ◽  
Endah Permata Sari

<p><em>Abstrak -</em><strong> </strong><strong>Produksi padi di Indonesia setiap tahun mengalami peningkatan, namun peningkatan ini belum mampu memenuhi kebutuhan nasional sehingga impor masih harus dilakukan. Salah satu masalah dalam produksi beras adalah penggunaan pupuk berlebih yang tidak hanya meningkatkan biaya produksi, namun juga merusak kondisi tanah. Aplikasi bakteri tanah sebagai Plant <em>Growth Promoting Rhizobacteria</em> (PGPR) dapat menjadi salah satu solusi terhadap masalah ini. Penelitian ini bertujuan untuk mengisolasi bakteri tanah dari 3 lokasi sawah daerah Bekasi, membandingkan keberadaan total bakteri pada ketiga lokasi tersebut,  dan melakukan karakterisasi isolat berdasarkan karakter yang dapat memicu pertumbuhan tanaman. Dari ketiga lokasi, diperoleh total 59 isolat dan 5 diantaranya berpotensi sebagai PGPR karena kemampuan fiksasi Nitrogen, melarutkan Fosfat, katalase positif, dan motil. Dari ketiga lokasi pengambilan sampel, BK1 memiliki jumlah total bakteri terendah karena aplikasi pemupukan dan pestisida berlebih yang ditandai tingginya kadar P total, serta tingginya residu klorpirifos, karbofuran, dan paration. Kondisi fisik tanah BK1 juga didominasi partikel liat yang menyebabkan tanah menjadi lebih padat. Peningkatan jumlah penggunaan pupuk tidak selalu diikuti peningkatan produktivitas tanaman.</strong></p><p> </p><p><strong><em>Kata Kunci</em></strong><strong><em> </em></strong>- <em>Bakteri tanah, Rhizosfer sawah, PGPR, Pupuk Hayati</em></p><p><strong> </strong></p><p><em>Abstract</em><strong> - </strong><strong>Rice production in Indonesia has increased annually, but this increase has not reached national demand,so imports still done. </strong><strong>One of the problems in rice production is the use of excessive fertilizers that not only increase production costs, but also decreased the soil conditions. The application of soil bacteria as Plant Growth Promoting Rhizobacteria (PGPR) can be the one solution to face this problem. The objective of this study was isolate soil bacteria from 3 locations of rice field in Bekasi, compare the total bacteria in the three locations, and characterize isolates based on the character that can promote plant growth. From three locations, a total of 59 isolates were obtained and 5 of them were potential as a PGPRs due to its Nitrogen fixation activity, Phosphate solubilization, positive catalase, and motility. From three sampling sites, BK1 has the lowest TPC value because of excessive  fertilizers and pesticides application which indicated by high total P levels, and also high chlorpyrifos, carbofuran and paration residues. The physical condition of BK1 soil is also dominated by clay particles which causes the soil more solid. Increasing of fertilizer application is not always followed by increased plant productivity.</strong></p><p><strong> </strong></p><p><strong><em>Keywords</em></strong> - <em>Biofertilizer, PGPR, Rice field rhizosphere, Soil Bacteria</em></p>


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1026 ◽  
Author(s):  
Laís G. Fregolente ◽  
João Vitor dos Santos ◽  
Giovanni Vinci ◽  
Alessandro Piccolo ◽  
Altair B. Moreira ◽  
...  

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Sign in / Sign up

Export Citation Format

Share Document