scholarly journals Numerical simulation of charging processes at ferroelectric diagnostics with scanning electron microscopy techniques

2014 ◽  
Vol 6 (1) ◽  
pp. 107-118
Author(s):  
Anna Gennadievna Maslovskaya ◽  
Anton Valerievich Sivunov
Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Michela Relucenti ◽  
Giuseppe Familiari ◽  
Orlando Donfrancesco ◽  
Maurizio Taurino ◽  
Xiaobo Li ◽  
...  

Several imaging methodologies have been used in biofilm studies, contributing to deepening the knowledge on their structure. This review illustrates the most widely used microscopy techniques in biofilm investigations, focusing on traditional and innovative scanning electron microscopy techniques such as scanning electron microscopy (SEM), variable pressure SEM (VP-SEM), environmental SEM (ESEM), and the more recent ambiental SEM (ASEM), ending with the cutting edge Cryo-SEM and focused ion beam SEM (FIB SEM), highlighting the pros and cons of several methods with particular emphasis on conventional SEM and VP-SEM. As each technique has its own advantages and disadvantages, the choice of the most appropriate method must be done carefully, based on the specific aim of the study. The evaluation of the drug effects on biofilm requires imaging methods that show the most detailed ultrastructural features of the biofilm. In this kind of research, the use of scanning electron microscopy with customized protocols such as osmium tetroxide (OsO4), ruthenium red (RR), tannic acid (TA) staining, and ionic liquid (IL) treatment is unrivalled for its image quality, magnification, resolution, minimal sample loss, and actual sample structure preservation. The combined use of innovative SEM protocols and 3-D image analysis software will allow for quantitative data from SEM images to be extracted; in this way, data from images of samples that have undergone different antibiofilm treatments can be compared.


Microscopy ◽  
2017 ◽  
Vol 66 (6) ◽  
pp. 414-423
Author(s):  
Monalisa Mishra ◽  
Ashutosh Choudhury ◽  
P Sagar Achary ◽  
Harekrushna Sahoo

Abstract Butterflies wings possess different types of scales to perform diverse functions. Each scale has many nano and microstructures, which interferes with light, resulting in unique coloration for each butterfly. Besides coloration, the arrangement of scales further helps in giving better survivability. Thus, analysis of wing pattern provides an overall idea about adaptation and activity of the animal. The current study deciphers the structure and composition of a wing of a pierid butterfly Catopsilia pomona, which remains active at 42°C at which temperature all other butterflies face a tougher task for existence. In order to know the relation between survivability and adaptation in the wing, we have investigated the structural and physical composition of the wing of C. pomona under optical spectroscopy (absorption, reflectance and transmittance) along with microscopy techniques (optical and scanning electron microscopy), which are not described in earlier studies. The current findings reveal unique structural arrangement within scales to provide the best fit to the animal in variable temperature.


Scanning ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Antonia Moropoulou ◽  
Elisabetta Zendri ◽  
Pilar Ortiz ◽  
Ekaterini T. Delegou ◽  
Ioanna Ntoutsi ◽  
...  

Scanning microscopy techniques have emerged as powerful scientific tools for analysing materials of architectural or archaeological interest, since the commercialization of the first scanning electron microscopy instrumentation in the early 60s. This study is aimed at reviewing and highlighting the significance of several scanning microscopy techniques employed in the protection of built heritage. The diffusion of scanning electron microscopy with energy-dispersive X-ray spectroscopy analysis (SEM-EDX) is proven to be the widest among the available scanning microscopy techniques, while transmission electron microscopy (TEM) applications are steadily present in the field of built heritage protection. The building material characterization, the weathering mechanism investigation, and the development of compatible and performing conservation materials are some major research areas where the application of the aforementioned techniques is discussed. The range of techniques, along with aspects of instrumentation and sample preparation are, also, considered.


1998 ◽  
Vol 4 (S2) ◽  
pp. 814-815
Author(s):  
E.F. Osten ◽  
M.S. Smith

We are using the term "Industrial Polymers" to refer to polymers [plastics] that are produced by the ton or (in the case of films) by the mile. For example, in descending order of world-wide use (tonnage), the top eight of these polymers are polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), styrene polymers (including polystyrene - PS, and acrylonitrile-butadienestyrene/ styrene-acrylonitrile - ABS/SAN), polyesters (PETP), polyurethane (PU), phenolics and aminoplastics.Industrial polymers, which have been produced by the millions of tons for the last five decades and are of obvious social and economic importance, have been exhaustively characterized. Structural features which affect physical properties and indicate process variables have been studied by many techniques other than microscopy (x-ray diffraction, thermal analysis, rheology, chromatographies, etc.). Microscopy techniques for polymer characterization have been well documented. Our motivation to apply field emission (high resolution) scanning electron microscopy to the study of polymers is: (1) The application of low voltage, high resolution SEM to biological materials is well characterized.


2009 ◽  
Vol 79-82 ◽  
pp. 1503-1506 ◽  
Author(s):  
Qing Bo Tian ◽  
Li Na Xu ◽  
Li Yang ◽  
Yan Sheng Yin

The influences of Fe2O3 doping on crystallization characteristics and microstructural morphology in the SiO2-Al2O3-MgO-K2O-ZrO2-F glass were investigated by using differential scanning calorimeter, X-ray diffraction and scanning electron microscopy techniques. The results indicate that the addtions of Fe2O3 shift the crystallization peaks to higher temperatures and the crystallization peaks increases in magnitude and the gap values between two crystallization peak temperatures boarden with the increment of Fe2O3 contents.The star-shaped crystals of cordietite by dendritic-manner growths are homogeneously precipitated in the rusidual glass. The mica phases, which are precipitated at interdendritic cordietite phases and formed the plate shapes at the elevated temperatures. The mica crystals grow at the expense of cordietite phases and finally form the composites of mica/cordietite uniformly distributed.


2016 ◽  
Vol 19 (1) ◽  
pp. 001-005 ◽  
Author(s):  
Paul Nesamony Prathiba Jeya Helan ◽  
Kannusamy Mohanraj ◽  
Sethuramachandran Thanikaikarasan ◽  
Thaiyan Mahalingam ◽  
Ganesan Sivakumar ◽  
...  

Copper tin sulphide nanoparticles have been prepared by solution growth technique at various ethylenediamine concentrations. Prepared samples have been characterized using x-ray diffraction, fourier transform infrared, Raman and scanning electron microscopy techniques. x-ray diffraction results revealed that the prepared samples are nanocrystalline in nature with tetragonal structure. Fourier transform infrared spectroscopy analysis results showed the presence of Cu-O, Sn-O and Sn-S vibrations in the wavenumber range between 450 and 620 cm-1. Vibrational symmetry of prepared samples have been analyzed using Raman spectroscopy. Scanning electron microscopy analysis indicated the formation of flower like nanocrystals for samples prepared at various Ethylenediamine concentrations.


Author(s):  
Long-Sun Chao ◽  
Yu-Ru Chen ◽  
Hsiun-Chang Peng

In this work, the excimer-laser-induced crystallization of amorphous silicon (a-Si) films was investigated numerically and experimentally. The basic structure is an a-Si film on a glass substrate. This study had investigated the effects of irradiating energy density on the grain size and structure by scanning electron microscopy (SEM). In the surface microstructure analysis of the laser-irradiated area, the critical fluences (full-melt threshold, FMT) between the partial melting and complete melting regimes can be found by applying scanning electron microscopy. An efficient two-dimensional numerical model is carried out to predict the critical fluences (FMT) and the transient temperature distribution during the laser processing. Numerical analysis of the temperature profile showed that a temperature drop occurred at the center of melted zone immediately after laser irradiation. From the analysis of temperature responses, the FMT obtained from the simulation results of the proposed model agree fairly well with those from the experimental data reported in the literature and acquired in this research. Furthermore, the grain growth of the poly-Si was studied by the grain observation of the cross section and its corresponding numerical simulation. The cross-sectional grain structure of the resulting poly-Si film was observed with different laser intensities. The grain sizes decreased with increasing irradiating energy intensity in the partial melting regime. From the surface observation, the grain distribution was uniform and most of the grain has a single crystallographic direction. The average grain size had the biggest value at FMT. But some super large grains occurred and combined with more than one crystallographic direction when the film obtained sufficiently high energy intensities that was closed or over the FMT. The grain distribution was not uniform. The super large gain was around the small grain size. The modified cellular automation method (MCA) was used to simulate the grain growth two-dimensionally and explain the grain development during the solidification process. The grain morphology of the numerical simulation was satisfied with the experimental observation. From the analysis of the grain growth, this model was able to simulate the undercooling effect and grain growth phenomenon and fitted for the experimental grain observation in the excimer-laser-induced crystallization.


1998 ◽  
Vol 4 (S2) ◽  
pp. 1156-1157
Author(s):  
W. J. Kozek ◽  
J. Brown ◽  
W. Meyer-Ilse ◽  
C. Larabell ◽  
M. Moronne

The small size of many parasitic organisms requires the use of election microscopy for adequate elucidation of their structure. While both transmission and scanning electron microscopy can provide complementary results which allow considerable degree of structural correlation, each technique has its inherent limitations. Since previous studies have demonstrated that soft X-ray microscopy could be used to study parasitic protozoa and provide new information, the objective of this study was to determine whether soft X-ray microscopy could also be used to elucidate the morphology of small metazoa to complement the data obtained by other microscopy techniques.Newborn larvae, approximately 7 μm × 110 μm in size, of parasitic nematode Trichinella spiralis were used as a model system. Some of the larvae, deposited by adult females maintained in vitro, were isolated and processed for examination by transmission and scanning electron microscopy as described in our previous studies, others were fixed in 4% glutaraldehyde (Millonig's buffer) and examined in the X-ray microscope XM-1, and in the BioRad MRC 1024 confocal laser (krypton/argon) microscope of the Advanced Light Source, Berkeley National Laboratory.


Sign in / Sign up

Export Citation Format

Share Document