scholarly journals Induced immunosuppression in critical care: diagnostic opportunities in clinical practice

2019 ◽  
Vol 18 (1) ◽  
pp. 18-29 ◽  
Author(s):  
E. V. Grigoryev ◽  
V. G. Matveeva ◽  
D. L. Shukevich ◽  
A. S. Radivilko ◽  
E. A. Velikanova ◽  
...  

The immune system in critical illnesses initiates local inflammation in the damaged area. In the absence of a balance between local and systemic inflammations, an infectious or non-infectious systemic inflammatory response follows, which has a stage of "hyper inflammation - compensatory anti-inflammatory response", that may result in multi-organ failure. The final stage of critical ill-nesses, therefore, will be characterized by induced immunosuppression with the impaired function of neutrophils, monocytes, macrophages and dendritic cells and release of myeloid-derived suppres-sor cells. The aim of the review is to evaluate the contribution of various components of the im-mune response to the formation of induced immune suppression from the perspective of candidate diagnostic markers.

2016 ◽  
Vol 20 (3) ◽  
pp. 20 ◽  
Author(s):  
E V Grigoryev ◽  
D L Shukevich ◽  
V G Matveeva ◽  
S V Pugachev ◽  
E A Kameneva ◽  
...  

<p>Critical states, regardless of the cause, are characterized by the formation of a systemic inflammatory response with multi-directional translations of pro- and anti-inflammatory mediators. Under the conditions of uncontrolled inflammation and the development of persistent organ failure, there exists a possibility of developing uncontrolled abnormal myelopoesis that might result in a release of myeloid suppressor cells. The purpose of the overview is to determine the role of myeloid suppressor cells in the development of immune suppression in critical states from the viewpoint of diagnostic significance, with the focus on both sterile and infectious systemic inflammation.</p><p>Received 20 April 2016. Accepted 18 August 2016.</p><p><strong>Funding:</strong> The study had no sponsorship. <br /><strong>Conflict of interest:</strong> The authors declare no conflict of interest.</p>


2015 ◽  
Vol 18 (3) ◽  
pp. 82 ◽  
Author(s):  
Ye. V. Grigorev ◽  
G. P. Plotnikov ◽  
D. L. Shukevich ◽  
A. S. Golovkin

Persistent multiple organ failure is a topical and relatively common problem in critically ill patients. We summarize the pathophysiological characteristics of this syndrome, namely the ratio of pro-and antiinflammatory components of the systemic inflammatory response, the formation of immune suppression and catabolism, pathological myelopoiesis, autophagy. The clinical and laboratory characteristics of probable diagnostics and the principal directions of intensive therapy are given.


2019 ◽  
Vol 20 (8) ◽  
pp. 799-816 ◽  
Author(s):  
Yue Qiu ◽  
Guo-wei Tu ◽  
Min-jie Ju ◽  
Cheng Yang ◽  
Zhe Luo

Sepsis, which is a highly heterogeneous syndrome, can result in death as a consequence of a systemic inflammatory response syndrome. The activation and regulation of the immune system play a key role in the initiation, development and prognosis of sepsis. Due to the different periods of sepsis when the objects investigated were incorporated, clinical trials often exhibit negative or even contrary results. Thus, in this review we aim to sort out the current knowledge in how immune cells play a role during sepsis.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Simone M Cuff ◽  
Joseph P Merola ◽  
Jason P Twohig ◽  
Matthias Eberl ◽  
William P Gray

Abstract Rapid determination of an infective aetiology causing neurological inflammation in the cerebrospinal fluid can be challenging in clinical practice. Post-surgical nosocomial infection is difficult to diagnose accurately, as it occurs on a background of altered cerebrospinal fluid composition due to the underlying pathologies and surgical procedures involved. There is additional diagnostic difficulty after external ventricular drain or ventriculoperitoneal shunt surgery, as infection is often caused by pathogens growing as biofilms, which may fail to elicit a significant inflammatory response and are challenging to identify by microbiological culture. Despite much research effort, a single sensitive and specific cerebrospinal fluid biomarker has yet to be defined which reliably distinguishes infective from non-infective inflammation. As a result, many patients with suspected infection are treated empirically with broad-spectrum antibiotics in the absence of definitive diagnostic criteria. To begin to address these issues, we examined cerebrospinal fluid taken at the point of clinical equipoise to diagnose cerebrospinal fluid infection in 14 consecutive neurosurgical patients showing signs of inflammatory complications. Using the guidelines of the Infectious Diseases Society of America, six cases were subsequently characterized as infected and eight as sterile inflammation. Twenty-four contemporaneous patients with idiopathic intracranial hypertension or normal pressure hydrocephalus were included as non-inflamed controls. We measured 182 immune and neurological biomarkers in each sample and used pathway analysis to elucidate the biological underpinnings of any biomarker changes. Increased levels of the inflammatory cytokine interleukin-6 and interleukin-6-related mediators such as oncostatin M were excellent indicators of inflammation. However, interleukin-6 levels alone could not distinguish between bacterially infected and uninfected patients. Within the patient cohort with neurological inflammation, a pattern of raised interleukin-17, interleukin-12p40/p70 and interleukin-23 levels delineated nosocomial bacteriological infection from background neuroinflammation. Pathway analysis showed that the observed immune signatures could be explained through a common generic inflammatory response marked by interleukin-6 in both nosocomial and non-infectious inflammation, overlaid with a toll-like receptor-associated and bacterial peptidoglycan-triggered interleukin-17 pathway response that occurred exclusively during infection. This is the first demonstration of a pathway dependent cerebrospinal fluid biomarker differentiation distinguishing nosocomial infection from background neuroinflammation. It is especially relevant to the commonly encountered pathologies in clinical practice, such as subarachnoid haemorrhage and post-cranial neurosurgery. While requiring confirmation in a larger cohort, the current data indicate the potential utility of cerebrospinal fluid biomarker strategies to identify differential initiation of a common downstream interleukin-6 pathway to diagnose nosocomial infection in this challenging clinical cohort.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Ze-Jun Yang ◽  
Bo-Ya Wang ◽  
Tian-Tian Wang ◽  
Fei-Fei Wang ◽  
Yue-Xin Guo ◽  
...  

Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.


Sign in / Sign up

Export Citation Format

Share Document