scholarly journals Antibiotic and Heavy Metal Tolerance of Some Indigenous Bacteria Isolated From Petroleum Contaminated Soil Sediments with A Study of Their Aromatic Hydrocarbon Degradation Potential

Author(s):  
Jai Godheja ◽  
Sudhir K. Shekhar ◽  
G.N.V. Satyanarayan ◽  
Dinesh Raj Modi
2012 ◽  
Vol 30 (1) ◽  
pp. 58 ◽  
Author(s):  
M. P. Krishna ◽  
Rinoy Varghese ◽  
A. A. Mohamed Hatha

The development of multiple metal/antibiotic resistances among the bacterial population causes a potential risk to human health. Metal contamination in natural environments could have an important role in the maintenance and proliferation of antibiotic resistance. In the present study, a total of 46 heterotrophic bacterial isolates from metal contaminated soil were tested for their sensitivity to 10 widely used antibiotics such as ampicillin, erythromycin, gentamicin, nalidixic acid, penicillin, amikacin, lincomycin, novobiocin, vancomycin and tetracycline. Metal tolerant ability of these isolates against five heavy metals such as lead, zinc, copper, cadmium and nickel were also determined. The results revealed that most of the bacterial isolates were resistant to one or more heavy metals/ antibiotics against which they are tested. Tolerance to heavy metal showed the following pattern; lead > zinc > nickel > copper > cadmium. Resistance to ampicillin (73.91%), penicillin (60.8%), lincomycin (43.47%) and nalidixic acid (21.73%) were encountered frequently. None of the isolates were resistant to amikacin, while resistance to gentamicin and tetracycline were low (2.17%). Out of the 46 bacterial isolates, 36 isolates showed multiple metal and antibiotic resistances. Isolate LOC 10 showed significantly high tolerance (100-300�g/mL) to all the metals and was resistant to 6 antibiotics.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1569
Author(s):  
Nosheen Akhtar ◽  
Noshin Ilyas ◽  
Humaira Yasmin ◽  
R. Z. Sayyed ◽  
Zuhair Hasnain ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.


2017 ◽  
Vol 18 (4) ◽  
pp. 1481-1486 ◽  
Author(s):  
WAHYU IRAWATI ◽  
SEMUEL RIAK ◽  
NIDA SOPIAH ◽  
SUSI SULISTIA

Irawati W, Riak S, Sopiah N, Sulistia S. 2017. Heavy metal tolerance in indigenous bacteria isolated from the industrial sewage in Kemisan River, Tangerang, Banten, Indonesia. Biodiversitas 18: 1481-1486. The bacterial study is a part of human calling in preserving the earth. Many indigenous bacteria isolated from heavy metal contaminated sites had resistance to heavy metal toxicity and could be used for heavy metal removal. The aims of this study were to isolate heavy metal-tolerant indigenous bacteria from the industrial sewage of Kemisan River in Tangerang, Banten, Indonesia. The potency of bacterial isolates to remove heavy metals was also determined. The heavy-metal tolerance was determined by measuring the minimum inhibitory concentration. The potency of bacterial isolate for removing heavy metals from the medium was determined by an atomic absorption spectrophotometer. The results showed that there were eight heavy metal-resistant bacteria isolated from Kemisan River with minimum inhibitory concentration ranging from 7 mM to 11 mM. Isolate PbSI1 was the highest lead tolerant bacteria, and also tolerant to copper and zinc. The isolate was able to remove 91.25% lead, 73.38% zinc, and 98.57% copper from medium supplemented with the mixture of these heavy metals. The addition of 9 mM of lead in the medium affected the morphological appearance of isolate colonies i.e PbSI1 and PbSI3 to become darker which might occur due to the survival mechanism of bacteria by absorbing the lead inside the cells. The finding of this study indicated that isolate PbSI1 was a promising bacterium, which could be further developed for heavy metal removal.


2021 ◽  
Vol 4 (1) ◽  
pp. 11-27
Author(s):  
MI Ja’afaru ◽  
OM Adeyemo ◽  
CH Okafor ◽  
P Bristone

This study was carried out to evaluate the effect of effluent produced from Yola abattoir on the heavy metals, the physicochemical parameters and the bacteriological quality of the contaminated soil. Stratified sampling technique was used to collect soil samples from the abattoir environment. Isolation of bacteria, cultural and biochemical characteristics were assessed using pour-plate and conventional techniques. Heavy metals presence was determined using atomic absorption spectrophotometer (AAS). Heavy metal tolerance by bacteria was done by agar plate method. The molecular identification was carried out using 16S rRNA gene of the bacteria. All data obtained were subjected to statistical analyses using analysis of variance (ANOVA) and t-test. Total bacterial count ranged from 6.19 x 105 and 8.50 x 105 CFU/mL. Bacterial species of Pseudomonas, Klebsiella, Staphylococcus, Bacillus, Streptococcus, Staphylococcus and Escherichia coli were isolated and identified. The highest mean value of the physicochemical parameters for pH, organic carbon, total nitrogen content, water holding capacity, total solid and total suspended solid of the effluent contaminated soil were 7.03, 7.97 %, 13.76 %, 2.48 %, 3346 g/cm, 1263 mg/L and 872 mg/L respectively. The minimum tolerance concentration of 50 ppm for copper, iron, zinc and cobalt was observed with a bacterium identified to be a strain of Pseudomonas aeruginosa. The isolated and identified Pseudomonas aeruginosa HBS2 strain has the potential to be used in bioremediation.


Author(s):  
Kashaf Junaid ◽  
Hasan Ejaz ◽  
Iram Asim ◽  
Sonia Younas ◽  
Humaira Yasmeen ◽  
...  

This study evaluates bacteriological profiles in ready-to-eat (RTE) foods and assesses antibiotic resistance, extended-spectrum β-lactamase (ESBL) production by gram-negative bacteria, and heavy metal tolerance. In total, 436 retail food samples were collected and cultured. The isolates were screened for ESBL production and molecular detection of ESBL-encoding genes. Furthermore, all isolates were evaluated for heavy metal tolerance. From 352 culture-positive samples, 406 g-negative bacteria were identified. Raw food samples were more often contaminated than refined food (84.71% vs. 76.32%). The predominant isolates were Klebsiella pneumoniae (n = 76), Enterobacter cloacae (n = 58), and Escherichia coli (n = 56). Overall, the percentage of ESBL producers was higher in raw food samples, although higher occurrences of ESBL-producing E. coli (p = 0.01) and Pseudomonas aeruginosa (p = 0.02) were observed in processed food samples. However, the prevalence of ESBL-producing Citrobacter freundii in raw food samples was high (p = 0.03). Among the isolates, 55% were blaCTX-M, 26% were blaSHV, and 19% were blaTEM. Notably, heavy metal resistance was highly prevalent in ESBL producers. These findings demonstrate that retail food samples are exposed to contaminants including antibiotics and heavy metals, endangering consumers.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 155
Author(s):  
Anastasia Giannakoula ◽  
Ioannis Therios ◽  
Christos Chatzissavvidis

Photosynthetic changes and antioxidant activity to oxidative stress were evaluated in sour orange (Citrus aurantium L.) leaves subjected to lead (Pb), copper (Cu) and also Pb + Cu toxicity treatments, in order to elucidate the mechanisms involved in heavy metal tolerance. The simultaneous effect of Pb− and Cu on growth, concentration of malondialdehyde (MDA), hydrogen peroxide (H2O2), chlorophylls, flavonoids, carotenoids, phenolics, chlorophyll fluorescence and photosynthetic parameters were examined in leaves of Citrus aurantium L. plants. Exogenous application of Pb and Cu resulted in an increase in leaf H2O2 and lipid peroxidation (MDA). Toxicity symptoms of both Pb and Cu treated plants were stunted growth and decreased pigments concentration. Furthermore, photosynthetic activity of treated plants exhibited a significant decline. The inhibition of growth in Pb and Cu-treated plants was accompanied by oxidative stress, as indicated by the enhanced lipid peroxidation and the high H2O2 concentration. Furthermore, antioxidants in citrus plants after exposure to high Pb and Cu concentrations were significantly increased compared to control and low Pb and Cu treatments. In conclusion, this study indicates that Pb and Cu promote lipid peroxidation, disrupt membrane integrity, reduces growth and photosynthesis and inhibit mineral nutrition. Considering the potential for adverse human health effects associated with high concentrations of Pb and Cu contained in edible parts of citrus plants the study signals that it is important to conduct further research into the accessibility and uptake of the tested heavy metals in the soil and whether they pose risks to humans.


BioMetals ◽  
2012 ◽  
Vol 25 (3) ◽  
pp. 489-505 ◽  
Author(s):  
Ganesh Thapa ◽  
Ayan Sadhukhan ◽  
Sanjib Kumar Panda ◽  
Lingaraj Sahoo

Sign in / Sign up

Export Citation Format

Share Document