scholarly journals Development of Polyclonal Antibody-Based on Immunological Formats for Pathogen Detection in Groundnut Leaf Tissues

Author(s):  
K. Chitra K. Dhananalakshmi ◽  
N. Indra P. Mareeshwari ◽  
Ragupathi V. Ambethgar

Immunological methods are highly useful to detect plant pathogens before symptom excrescence. Among the various immuno assay Enzyme Linked Immuno Sorbant Assay (ELISA) are well suited for detecting viral and fungal pathogens. The present investigation for the specific and early detection of groundnut leaf blight pathogen was standardized using polyclonal antiserum, the optimum dilution of antigen and antisera (antobody) was 1:1000 and 1:100 respectively with the titre value of 1:10. leaf blight infected groundnut plants could be detected 6 days before symptom expression. Prediction of infection well in advance help us to take remedial measures in time.

2018 ◽  
Author(s):  
Yiheng Hu ◽  
Gamran S. Green ◽  
Andrew W. Milgate ◽  
Eric A. Stone ◽  
John P. Rathjen ◽  
...  

ABSTRACTFungal diseases of plants are responsible for major losses in agriculture, highlighting the need for rapid and accurate identification of plant pathogens. Disease outcomes are often defined not only by the main pathogen but are influenced by diverse microbial communities known as the microbiome at sites of infection. Here we present the first use of whole genome shot-gun sequencing with a portable DNA sequencing device as a method for the detection of fungal pathogens from wheat(Triticum aestivum)in a standard molecular biology laboratory. The data revealed that our method is robust and applicable to the diagnosis of fungal diseases including wheat stripe rust (caused byPuccinia striiformisf. sp.tritici),septoria tritici blotch (caused byZymoseptoria tritici)and yellow leaf spot (caused byPyrenophora tritici repentis).We also identified the bacterial genusPseudomonasco-present withPucciniaandZymoseptoriabut notPyrenophorainfections. One limitation of the method is the over-representation of redundant wheat genome sequences from samples. This could be addressed by long-range amplicon-based sequencing approaches in future studies, which specifically target non-host organisms. Our work outlines a new approach for detection of a broad range of plant pathogens and associated microbes using a portable sequencer in a standard laboratory, providing the basis for future development of an on-site disease monitoring system.


2019 ◽  
Vol 3 (2) ◽  
pp. 92-101 ◽  
Author(s):  
Yiheng Hu ◽  
Gamran S. Green ◽  
Andrew W. Milgate ◽  
Eric A. Stone ◽  
John P. Rathjen ◽  
...  

Fungal diseases of plants are responsible for major losses in agriculture, highlighting the need for rapid and accurate identification of plant pathogens. Disease outcomes are often defined not only by the main pathogen but are influenced by diverse microbial communities known as the microbiome at sites of infection. Here we present the first use of whole genome shot-gun sequencing with a portable DNA sequencing device as a method for the detection of fungal pathogens from wheat (Triticum aestivum) in a standard molecular biology laboratory. The data revealed that our method is robust and applicable to the diagnosis of fungal diseases including wheat stripe rust (caused by Puccinia striiformis f. sp. tritici), Septoria tritici blotch (caused by Zymoseptoria tritici), and yellow leaf spot (caused by Pyrenophora tritici repentis). We also identified the bacterial genus Pseudomonas co-present with Puccinia and Zymoseptoria but not Pyrenophora infections. One limitation of the method is the over-representation of redundant wheat genome sequences from samples. This could be addressed by long-range amplicon-based sequencing approaches in future studies, which specifically target nonhost organisms. Our work outlines a new approach for detection of a broad range of plant pathogens and associated microbes using a portable sequencer in a standard laboratory, providing the basis for future development of an on-site disease monitoring system. [Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2017 ◽  
Author(s):  
Benjamin Horwitz ◽  
Nicole M. Donofrio

Plants and their fungal pathogens both produce reactive oxygen species (ROS). CytotoxicROS act both as stressors and signals in the plant-fungal interaction. In biotrophs, a compatible interaction generates little ROS, but is followed by disease. An incompatible interaction results in a strong oxidative burst by the host, limiting infection. Necrotrophs, in contrast, thrive on dead and dying cells in an oxidant-rich local environment. Rice blast, Magnaportheoryzae, a hemibiotroph, occurs worldwide on rice and related hosts and can decimate enough rice each year to feed sixty million people. Cochliobolusheterostrophus, a necrotroph, causes Southern corn leaf blight (SLB), responsible for a major epidemic in the 1970s. The objectives of our study of ROS signaling and response in these two cereal pathogens were:  Confocal imaging of ROS production using genetically encoded redox sensor in two pathosystems over time. Forward genetic screening of HyPer sensor lines in two pathosystems for fungal genes involved in altered ROSphenotypes. RNA-seq for discovery of genes involved in ROS-related stress and signaling in two pathosystems. Revisions to the research plan: Library construction in SLB was limited by low transformation efficiency, compounded by a protoplasting enzyme being unavailable during most of year 3. Thus Objective 2 for SLB re-focused to construction of sensor lines carrying deletion mutations in known or candidate genes involved in ROS response. Imaging on rice proved extremely challenging, so mutant screening and imaging were done with a barley-infecting line, already from the first year.   In this project, ROS imaging at unprecedented time and spatial resolution was achieved, using genetically-encoded ratio sensors in both pathogens. This technology is currently in use for a large library of rice blast mutants in the ROS sensor background, and Southern corn leaf blight mutants in final stages of construction. The imaging methods developed here to follow the redox state of plant pathogens in the host tissue should be applicable to fungal pathogens in general. Upon completion of mutant construction for SCLB we hope to achieve our goal of comparison between intracellular ROS status and response in hemibiotroph and necrotroph cereal pathogens. 


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Dominik Bleša ◽  
Pavel Matušinský ◽  
Romana Sedmíková ◽  
Milan Baláž

The use of biological control is becoming a common practice in plant production. One overlooked group of organisms potentially suitable for biological control are Rhizoctonia-like (Rh-like) fungi. Some of them are capable of forming endophytic associations with a large group of higher plants as well as mycorrhizal symbioses. Various benefits of endophytic associations were proved, including amelioration of devastating effects of pathogens such as Fusarium culmorum. The advantage of Rh-like endophytes over strictly biotrophic mycorrhizal organisms is the possibility of their cultivation on organic substrates, which makes their use more suitable for production. We focused on abilities of five Rh-like fungi isolated from orchid mycorrhizas, endophytic fungi Serendipita indica, Microdochium bolleyi and pathogenic Ceratobasidium cereale to inhibit the growth of pathogenic F. culmorum or Pyrenophora teres in vitro. We also analysed their suppressive effect on wheat infection by F. culmorum in a growth chamber, as well as an effect on barley under field conditions. Some of the Rh-like fungi affected the growth of plant pathogens in vitro, then the interaction with plants was tested. Beneficial effect was especially noted in the pot experiments, where wheat plants were negatively influenced by F. culmorum. Inoculation with S. indica caused higher dry shoot biomass in comparison to plants treated with fungicide. Prospective for future work are the effects of these endophytes on plant signalling pathways, factors affecting the level of colonization and surviving of infectious particles.


2021 ◽  
Vol 7 (2) ◽  
pp. 86
Author(s):  
Bilal Ökmen ◽  
Daniela Schwammbach ◽  
Guus Bakkeren ◽  
Ulla Neumann ◽  
Gunther Doehlemann

Obligate biotrophic fungal pathogens, such as Blumeria graminis and Puccinia graminis, are amongst the most devastating plant pathogens, causing dramatic yield losses in many economically important crops worldwide. However, a lack of reliable tools for the efficient genetic transformation has hampered studies into the molecular basis of their virulence or pathogenicity. In this study, we present the Ustilago hordei–barley pathosystem as a model to characterize effectors from different plant pathogenic fungi. We generate U. hordei solopathogenic strains, which form infectious filaments without the presence of a compatible mating partner. Solopathogenic strains are suitable for heterologous expression system for fungal virulence factors. A highly efficient Crispr/Cas9 gene editing system is made available for U. hordei. In addition, U. hordei infection structures during barley colonization are analyzed using transmission electron microscopy, showing that U. hordei forms intracellular infection structures sharing high similarity to haustoria formed by obligate rust and powdery mildew fungi. Thus, U. hordei has high potential as a fungal expression platform for functional studies of heterologous effector proteins in barley.


1988 ◽  
Vol 2 (4) ◽  
pp. 519-524 ◽  
Author(s):  
Doug Kenfield ◽  
Greg Bunkers ◽  
Gary A. Strobel ◽  
Fumio Sugawara

A rationale for the study of phytotoxins from fungal pathogens of plants is presented. Structural chemistries and biological data are given for numerous, recently discovered phytotoxins in such diverse chemical classes as polyketides, terpenoids, diketopiperazines, and isocoumarins. The biological activities of these compounds range from broadly toxic (curvulin) to host specific (maculosin-1). Phytotoxicology offers a viable supplement to organic synthesis as a means of developing and implementing new, biorational, and economical herbicides.


2008 ◽  
Vol 20 (1) ◽  
pp. 62 ◽  
Author(s):  
M. JALLI ◽  
P. LAITINEN ◽  
S. LATVALA

Fungal plant pathogens causing cereal diseases in Finland have been studied by a literature survey, and a field survey of cereal leaf spot diseases conducted in 2009. Fifty-seven cereal fungal diseases have been identified in Finland. The first available references on different cereal fungal pathogens were published in 1868 and the most recent reports are on the emergence of Ramularia collo-cygni and Fusarium langsethiae in 2001. The incidence of cereal leaf spot diseases has increased during the last 40 years. Based on the field survey done in 2009 in Finland, Pyrenophora teres was present in 86%, Cochliobolus sativus in 90% and Rhynchosporium secalis in 52% of the investigated barley fields. Mycosphaerella graminicola was identified for the first time in Finnish spring wheat fields, being present in 6% of the studied fields. Stagonospora nodorum was present in 98% and Pyrenophora tritici-repentis in 94% of spring wheat fields. Oat fields had the fewest fungal diseases. Pyrenophora chaetomioides was present in 63% and Cochliobolus sativus in 25% of the oat fields studied.;


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2424
Author(s):  
Aleksandr V. Ivanov ◽  
Irina V. Safenkova ◽  
Anatoly V. Zherdev ◽  
Boris B. Dzantiev

Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.


2021 ◽  
Vol 10 (15) ◽  
pp. e296101522465
Author(s):  
Erika Valente de Medeiros ◽  
Lucas Figueira da Silva ◽  
Jenifer Sthephanie Araújo da Silva ◽  
Diogo Paes da Costa ◽  
Carlos Alberto Fragoso de Souza ◽  
...  

A better understanding of the use of biochar with Trichoderma spp. (TRI), considered the most studied tool for biological control, would increase our ability to set priorities. However, no studies exist using the two inputs on plant disease management. Here, we hypothesized that biochar and TRI would be used for the management of soilborne plant pathogens, mainly due to changes in soil properties and its interactions. To test this hypothesis, this review assesses papers that used biochar and TRI against plant diseases and we summarize the handling mechanisms for each input. Biochar acts by mechanisms: induction to plant resistance, sorption of allelopathic and fungitoxic compounds, increase of beneficial microorganisms, changes the soil properties that promote health and nutrient availability. Trichoderma as biocontrol agents by different mechanisms: mycoparasitism, enzyme and secondary metabolic production, plant promoter agent, natural decomposition agent, and biological agent of bioremediation. Overall, our findings expand our knowledge about the reuse of wastes transformed in biochar combined with Trichoderma has potential perspective to formulate products as alternative management tool of plant disease caused by soilborne fungal pathogen and add important information that can be suitable for development of strategy for use in the global health concept.


2018 ◽  
Vol 84 (9) ◽  
Author(s):  
Wen Chen ◽  
Sarah Hambleton ◽  
Keith A. Seifert ◽  
Odile Carisse ◽  
Moussa S. Diarra ◽  
...  

ABSTRACTSpore samplers are widely used in pathogen surveillance but not so much for monitoring the composition of aeromycobiota. In Canada, a nationwide spore-sampling network (AeroNet) was established as a pilot project to assess fungal community composition in air and rain samples collected using three different spore samplers in the summers of 2010 and 2011. Metabarcodes of the internal transcribed spacer (ITS) were exhaustively characterized for three of the network sites, in British Columbia (BC), Québec (QC), and Prince Edward Island (PEI), to compare performance of the samplers. Sampler type accounted for ca. 20% of the total explainable variance in aeromycobiota compositional heterogeneity, with air samplers recovering more Ascomycota and rain samplers recovering more Basidiomycota. Spore samplers showed different abilities to collect 27 fungal genera that are plant pathogens. For instance,Cladosporiumspp.,Drechsleraspp., andEntylomaspp. were collected mainly by air samplers, whileFusariumspp.,Microdochiumspp., andUstilagospp. were recovered more frequently with rain samplers. The diversity and abundance of some fungi were significantly affected by sampling location and time (e.g.,AlternariaandBipolaris) and weather conditions (e.g.,MycocentrosporaandLeptosphaeria), and depended on using ITS1 or ITS2 as the barcoding region (e.g.,EpicoccumandBotrytis). The observation that Canada's aeromycobiota diversity correlates with cooler, wetter conditions and northward wind requires support from more long-term data sets. Our vision of the AeroNet network, combined with high-throughput sequencing (HTS) and well-designed sampling strategies, may contribute significantly to a national biovigilance network for protecting plants of agricultural and economic importance in Canada.IMPORTANCEThe current study compared the performance of spore samplers for collecting broad-spectrum air- and rain-borne fungal pathogens using a metabarcoding approach. The results provided a thorough characterization of the aeromycobiota in the coastal regions of Canada in relation to the influence of climatic factors. This study lays the methodological basis to eventually develop knowledge-based guidance on pest surveillance by assisting in the selection of appropriate spore samplers.


Sign in / Sign up

Export Citation Format

Share Document