scholarly journals A Study of Contact Interface for an Anti-Rotation Rivet Using Ultrasonic Detection

2019 ◽  
Vol 24 (4) ◽  
pp. 648-656
Author(s):  
Chuang Wen Yao ◽  
Hsueh Chih Cheng

This work measures the contact area between an anti-rotation rivet and an aluminum plate under different riveting loads based on the regional scanning of ultrasound. The contact image is a novel disclosure for the anti-rotation rivet contact. The 2D maps show an apparent change not only in area sizes but also in contact shapes under various normal forces applied. The 3D contact images also provide useful information to show the intensity of contact. The contact area between the anti-rotation rivet and the aluminum is calculated using an image analysis software package. The range of contact areas varies from 6.3 mm2 to 57.2 mm2, depending on the applied forces and the definition of the contrast ratio. Furthermore, a calibration of data fitting is performed to provide a useful polynomial equation for contact area estimation. In addition, maps of both a reflection coefficient and a pressure contour distribution are presented. The range of peak contact pressure varies from 7.1 MPa to 11.2 MPa.

1997 ◽  
Vol 3 (S2) ◽  
pp. 1081-1082
Author(s):  
I. Angert ◽  
W. Jahn ◽  
K.C. Holmes ◽  
R.R. Schröder

Understanding the contrast formation mechanism in the EM is one of the prerequisites for artefact-free reconstruction of biological structures from images. We found that the normally used correction of contrast formation applied to zero energy loss filtered images corrupted spatial resolution. Therefore the contribution of contrast formed by inelastic electrons was reconsidered, including partial coherence of inelastically scattered electrons and lens aberrations of the microscope. Based on this, a complete description of the zero-loss contrast transfer function (CTF) is now possible.We used tobacco mosaic virus (TMV), a biological sample known at atomic resolution, for definition of optimum CTF-parameters to reconstruct defocus series from an EFTEM LEO 912. CTF theory as known so far describes image contrast in the weak phase approximation as a linear sum of amplitude and phase contrast. The contribution of amplitude contrast (ratio of amplitude to phase contrast A/P) was determined to be between 7% and 5 % for unfiltered images and 12-14 % for zero-loss filtered images. However, in a filter microscope we remove electrons from the image, so we expect a higher amplitude contrast than in non-filtered images.


Author(s):  
Rémi Berriet ◽  
René Fillod ◽  
Noureddine Bouhaddi

Abstract In order to take into account information from test data, not only at the resonances, but also in the other parts of the measured frequency spectrum, it is of interest to use directly measured Frequency Response Functions (FRF) instead of modal data. We also avoid by this way an experimental modal analysis. In return we have to introduce damping terms into the analytical model, we have to weight the FRF data in a systematic manner and to compute simultaneously a large amount of data. The presented procedure analyses overall these three aspects: definition of modal damping parameters, definition of weighted FRF data and condensation of the problem. This last notion is particularly pointed out. The condensation is performed in two steps : a static condensation of the model on the degrees of freedom corresponding to the location of the sensors, and a simultaneous condensation of experimental and analytical FRF data by a common transformation matrix. The first applications are performed on a simulated test case with large stiffness, mass and modal damping perturbations introduced in the initial model as well as strong noise pollution of measured responses and applied forces.


2000 ◽  
Vol 203 (12) ◽  
pp. 1887-1895 ◽  
Author(s):  
Y. Jiao ◽  
S. Gorb ◽  
M. Scherge

The tarsi of the cricket Tettigonia viridissima bear flexible attachment pads that are able to deform, replicating the profile of a surface to which they are apposed. This attachment system is supplemented by a secretion produced by epidermal cells and transported onto the surface of the pad through the pore canals of the pad cuticle. This study shows that the secretion alone is necessary, but not sufficient, for adhesion. To account for the full adhesive force, the deformation of the pad and the resulting changes in contact area were considered. In two series of experiments, the adhesive properties of the secretion and the adhesion of the whole pad were measured using a force tester, the sensitivity of which ranged from micronewtons to centinewtons. The adhesive forces of the secretion measured between a smooth sapphire ball with a diameter of 1.47 mm and a flat silicon surface ranged from 0.1 to 0.6 mN. In a control experiment on the silicon surface without secretion, no adhesive force was measured. There was no dependence of the adhesive force on the applied compressive force. When an intact pad was pulled off a flat silicon surface, the adhesive force increased with increasing applied compressive force, but it did not increase further once the applied force exceeded a certain value. The saturated adhesive force, ranging from 0.7 to 1.2 mN, was obtained at applied forces of 0.7-1.5 mN. The hemispherical surface of the pad had a larger contact area and demonstrated greater adhesion under a larger applied force. Adhesion became saturated when a pad was deformed such that contact area was maximal. The tenacity (the adhesive force per unit area) was 1.7-2.2 mN mm(−)(2).


Author(s):  
Xinyu Mao ◽  
Wei Liu ◽  
Yuanzhi Ni ◽  
Valentin L Popov

We consider fretting wear due to superimposed normal and tangential oscillations of two contacting bodies, one of which is an elastomer with a linear rheology. Similarly to the contact of elastic bodies, at small oscillation amplitudes, the wear occurs only in a circular slip zone at the border of the contact area and the wear profile tends to a limiting form, in which no further wear occurs. It is shown that under assumption of a constant coefficient of friction at the contact interface, the limiting form of the wear profile does depend neither on the particular wear criterion nor on the rheology of the elastomer and can be calculated analytically in a general form. The general calculation procedure and explicit analytic solutions for two initial forms, parabolic and conical, are presented for various combinations of frequencies and phases of normal and tangential oscillations as well as for various linear rheologies of the elastomer.


2019 ◽  
Vol 19 (04) ◽  
pp. 1950016
Author(s):  
SHILEI WANG ◽  
LILAN GAO ◽  
CHUNQIU ZHANG ◽  
YANG SONG ◽  
XIZHENG ZHANG ◽  
...  

Knee joint is the main weight bearing tissue of human body, also it is one of the prone parts of the clinical disease. Under different sports conditions, knee joint was loaded at different forms. In this study, the changes of average contact pressure, peak contact pressure, contact area and pressure-sharing regions were researched using the intact and defect pig knee joints under different loading rates and loads, including fast rates and large loads. These data were measured and recorded by usage of the sensor plate that placed between the unilateral meniscus and the femur cartilage during loading process. As for the intact cartilage samples, the average contact pressure and peak contact pressure of the femur cartilage increase with the loading rate, while the contact area is contrast to it. As for defect cartilage samples, it not only emerged stress concentration on the edge of the defect and pressure distribution in joint cavity was different with intact cartilage samples, but also the main bearing region was transferred from the femur cartilage-meniscus contact area to the femur cartilage-tibial cartilage contact area at different loading forms. In different loading stages, the pressure-sharing regions between the cartilage and the meniscus also changes. Different loading rates, different loads and defects will change the mechanical states of the knee joint. In loading forms, the mechanical condition may cause or aggravate damnification of the knee joint cartilage. Therefore, this study is beneficial for promoting and perfecting the research of mechanical properties of knee joint cartilage and provides a theoretical basis for the prevention and treatment of knee cartilage injury.


2002 ◽  
Vol 69 (5) ◽  
pp. 657-662 ◽  
Author(s):  
L. Kogut ◽  
I. Etsion

An elastic-plastic finite element model for the frictionless contact of a deformable sphere pressed by a rigid flat is presented. The evolution of the elastic-plastic contact with increasing interference is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. The model provides dimensionless expressions for the contact load, contact area, and mean contact pressure, covering a large range of interference values from yielding inception to fully plastic regime of the spherical contact zone. Comparison with previous elastic-plastic models that were based on some arbitrary assumptions is made showing large differences.


1959 ◽  
Vol 32 (2) ◽  
pp. 477-489 ◽  
Author(s):  
A. G. Thomas

Abstract It has been noted in Part I of this series (referred to hereafter as I), that if a nicked specimen of a natural rubber vulcanizate is slowly stretched, tearing occurs at the tip for quite small applied forces. In the initial stages, this tearing continues only as long as the deformation of the specimen is being increased, and virtually ceases if the deformation is held constant. This tearing is essentially time independent, and is termed “static” cut growth. If, however, the deformation is continued until the cut has grown by a few hundredths of a millimeter the growth becomes time dependent and catastrophic tearing takes place, the cut suddenly increasing in length by perhaps a millimeter or so. If a nicked specimen is alternately stretched and relaxed to the unstrained state, the cut gradually grows even though the applied force is less than that required to produce catastrophic tearing. This phenomenon is termed “dynamic” cut growth. This behavior can be compared to that of gum GR-S vulcanizates described in Part III, where static cut growth of the above type does not occur, a dead load on a test piece producing a more or less steady rate of cut growth. In the present paper, measurements on natural rubber gum vulcanizates only are described, and the numerical results expressed in terms of the theory developed in previous papers (Parts I, II and III). It has been shown in I and II that the tear behavior of differently shaped test pieces cut from thin sheets of thickness t may be correlated by means of the concept of the energy for tearing. This is defined as the value of T[=(1/t)(∂W/∂c)l] at the instant of tear, and is denoted by Tc. In the definition of T, is the total elastic energy stored in the test piece, c the length of the cut, and the subscript l indicates that the differentiation is to be carried out at constant displacement of those parts of the boundary that are not force-free. It was also shown that a convenient and direct method of obtaining Tc is by the use of the “simple extension” tear test piece described in I and shown in Figure 1, and this has been used for most of the experiments. Under most conditions, T for this test piece is nearly independent of the cut length, width of the test piece, and modulus of the rubber; T is very nearly equal to 2F/twhere F is the force applied to the arms. In the cases where the use of the above approximate relation between T and F introduces an appreciable error, the exact theory given in I was used.


2004 ◽  
Vol 126 (4) ◽  
pp. 639-645 ◽  
Author(s):  
Francesco Aymerich ◽  
Massimiliano Pau

In this paper the application of an ultrasonic method to evaluate size and shape of the nominal contact area between two contacting bodies is studied. The technique is based on the analysis of the quota of the ultrasonic wave reflected by the interface, which may be related to the level of contact between the surfaces. A simple deconvolution procedure is applied to the raw ultrasonic data so as to remove the blurring effect introduced by the ultrasonic beam size. The ultrasonic data acquired on a simple sphere-plane contact interface are compared with those obtained by means of a commercial pressure sensitive film and the results are discussed to evaluate the capability of the ultrasonic technique to capture the main contact patch features correctly.


Author(s):  
Yicong Zhou ◽  
Qiyin Lin ◽  
Jun Hong ◽  
Nan Yang

The characteristics of contact interfaces such as the distribution uniformity of the contact pressure and the effective contact area play a crucial role in engineering equipment. To investigate the influences of the variable material stiffness optimization (VMSO) design on the contact characteristics of the contact interfaces in an assembly, an heuristic-based VMSO algorithm is developed in this paper. A bi-objective function is defined by including both the distribution uniformity of the contact pressure and the effective contact area. A single bolted joint model is adopted as a design example. The results indicate that optimizing the stiffness of the materials around the contact interface is an effective approach to enhance the distribution uniformity of the contact pressure, increase the effective contact area and decrease the maximum contact pressure. Furthermore, the improvement effectiveness provided by the proposed variable stiffness design is better than that provided by the traditional variable thickness design.


Sign in / Sign up

Export Citation Format

Share Document