Effects of some pesticides on two yeast strains Saccharomyces cerevisiae and Metschnikowia pulcherrima

OENO One ◽  
2005 ◽  
Vol 39 (2) ◽  
pp. 67
Author(s):  
Dalal Jawich ◽  
Christo Hilan ◽  
Rachad Saliba ◽  
Roger Lteif ◽  
Pierre Strehaiano

<p style="text-align: justify;">The effect of different concentrations (0-20 LMR) of six pesticides on the aerobic growth of two yeast strains (<em>Saccharomyces cerevisiae, Metschnikowia pulcherrima</em>) was analysed. The penconazole was shown as the most efficient and its effect was then studied under fermentative conditions. <em>Saccharomyces cerevisiae</em> appeared very sensitive under aerobiosis while the fermentative cultures seemed poorly affected. On the opposite, <em>Metschnikowia pulcherrima</em> was poorly affected under aerobiosis but was severely affected under fermentative conditions. The yields as well as the reaction rates decreased when initial concentrations of penconazole were increased. At least, it was shown that both strains were able to adsorb a certain ratio of the pesticide; but the pesticide was not degraded. Also for an initial value greater than 2 LMR, the residual quantity of the pesticide was above the admitted level.</p>

Author(s):  
Daniel Einfalt

Abstract The use of different yeast strains contributes to obtain insights into beer products with diverse sensory characteristics. In this study, three yeast species of different genera were selected to evaluate their fermentation performance and sensory profile for barley-sorghum beer production. Baley-sorghum wort was produced with 12.5°P and fermented with Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima yeast strains. Differences were observed in terms of fermentation time and ability to ferment maltose. S. cerevisiae attenuated initial maltose concentration within 72 h, while M. pulcherrima and T. delbrueckii performed fermentation within 120 and 192 h, respectively. Both yeast strains simultaneously produced 11% and 23% lower ethanol concentrations, compared to S. cerevisiae with 37.9 g/L. Wort fermented with T. delbrueckii showed residual maltose concentration of 19.7 ± 4.1 g/L, resulting in significantly enhanced beer sweetness. S. cerevisiae produced significantly increased levels of higher alcohols, and obtained the highest scores for the sensory attribute body perception. Beer produced with T. delbrueckii contained significantly lower fermentative 2,3-butanediol and 2-methyl-1-butanol volatiles; this beer also showed reduced body perception. Beer conditioned with T. delbrueckii was significantly preferred over M. pulcherrima. Besides S. cerevisiae with high fermentative power, T. delbrueckii and M. pulcherrima were found to have reduced maltose fermenting abilities and provide significantly different sensory attributes to barley-sorghum beers.


2018 ◽  
Vol 39 (4) ◽  
pp. 474-482
Author(s):  
Hoang Thi Le Thuong ◽  
Nguyen Quang Hao ◽  
Tran Thi Thuy

Eight yeast strains (denoted as D1 to D8) were isolated from samples of natural fermented pineapple. Strain D8 showed highest alcoholic production at low pH and special aroma of pineapple has been chosen for further study. Taxonomic characterization of strain D8 using morphological, biochemical and molecular biological studies confirmed that strain D8  belong to Saccharomycetaceae family, Saccharomycetales order and Saccharomyces cerevisiae species. Therefore, we named this strain as Saccharomyces cerevisiae D8 for further study on Brandy production from pineapple. Citation: Hoang Thi Le Thuong, Nguyen Quang Hao, Tran Thi Thuy, 2017. Taxonomic characterization and identification of Saccharomyces cerevisiae D8 for brandy production from pineapple. Tap chi Sinh hoc, 39(4): 474- 482. DOI: 10.15625/0866-7160/v39n4.10864.*Corresponding author: [email protected] Received 5 December 2016, accepted 12 August 2017


Beverages ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 27
Author(s):  
Dimitrios Kontogiannatos ◽  
Vicky Troianou ◽  
Maria Dimopoulou ◽  
Polydefkis Hatzopoulos ◽  
Yorgos Kotseridis

Nemea and Mantinia are famous wine regions in Greece known for two indigenous grape varieties, Agiorgitiko and Moschofilero, which produce high quality PDO wines. In the present study, indigenous Saccharomyces cerevisiae yeast strains were isolated and identified from spontaneous alcoholic fermentation of Agiorgitiko and Moschofilero musts in order to evaluate their oenological potential. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) recovered the presence of five distinct profiles from a total of 430 yeast isolates. The five obtained strains were evaluated at microvinifications trials and tested for basic oenological and biochemical parameters including sulphur dioxide and ethanol tolerance as well as H2S production in sterile grape must. The selected autochthonous yeast strains named, Soi2 (Agiorgitiko wine) and L2M (Moschofilero wine), were evaluated also in industrial (4000L) fermentations to assess their sensorial and oenological characteristics. The volatile compounds of the produced wines were determined by GC-FID. Our results demonstrated the feasibility of using Soi2 and L2M strains in industrial fermentations for Agiorgitiko and Moschofilero grape musts, respectively.


2017 ◽  
Vol 27 (2) ◽  
pp. 81-90 ◽  
Author(s):  
Jolanta Mierzejewska ◽  
Aleksandra Tymoszewska ◽  
Karolina Chreptowicz ◽  
Kamil Krol

2-Phenylethanol (2-PE) is an aromatic alcohol with a rosy scent which is widely used in the food, fragrance, and cosmetic industries. Promising sources of natural 2-PE are microorganisms, especially yeasts, which can produce 2-PE by biosynthesis and biotransformation. Thus, the first challenging goal in the development of biotechnological production of 2-PE is searching for highly productive yeast strains. In the present work, 5 laboratory <i>Saccharomyces cerevisiae</i> strains were tested for the production of 2-PE. Thereafter, 2 of them were hybridized by a mating procedure and, as a result, a new diploid, <i>S. cerevisiae</i> AM1-d, was selected. Within the 72-h batch culture in a medium containing 5 g/L of <smlcap>L</smlcap>-phenylalanine, AM1-d produced 3.83 g/L of 2-PE in a shaking flask. In this way, we managed to select the diploid <i>S. cerevisiae</i> AM1-d strain, showing a 3- and 5-fold increase in 2-PE production in comparison to parental strains. Remarkably, the enhanced production of 2-PE by the hybrid of 2 yeast laboratory strains is demonstrated here for the first time.


1991 ◽  
Vol 37 (5) ◽  
pp. 397-403 ◽  
Author(s):  
Hiroshi Kuriyama ◽  
Itaru Umeda ◽  
Harumi Kobayashi

Asexual yeast flocculation was studied using strong flocculents of Saccharomyces cerevisiae. The inhibitory effect of cations on flocculation is considered to be caused by competition between those cations and Ca2+ at the binding site of the Ca2+-requiring protein that is involved in flocculation. Inhibition of flocculation by various cations occurred in the following order: La3+, Sr2+, Ba2+, Mn2+, Al3+, and Na+. Cations such as Mg2+, Co2+, and K+ promoted flocculation. This promoting effect may be based on the reduction of electrostatic repulsive force between cells caused by binding of these cations anionic groups present on the cell surface. In flocculation induced by these cations, trace amounts of Ca2+ excreted on the cell surface may activate the corresponding protein. The ratio of Sr2+/Ca2+ below which cells flocculated varied among strains: for strains having the FLO5 gene, it was 400 to 500; for strains having the FLO1 gene, about 150; and for two alcohol yeast strains, 40 to 50. This suggests that there are several different types of cell surface proteins involved in flocculation in different yeast strains. Key words: yeast, flocculation, protein, cation, calcium.


Author(s):  
Hiroaki Negoro ◽  
Atsushi Kotaka ◽  
Hiroki Ishida

ABSTRACT Saccharomyces cerevisiae produces organic acids including malate during alcohol fermentation. Since malate contributes to the pleasant flavor of sake, high-malate-producing yeast strain No. 28 and No. 77 have been developed by the Brewing Society of Japan. In this study, the genes responsible for the high malate phenotype in these strains were investigated. We had found previously that the deletion of components of the glucose induced degradation-deficient (GID) complex led to high malate production in yeast. Upon examining GID protein-coding genes in yeast strain No. 28 and No. 77, a nonsense homozygous mutation of GID4 in strain No. 28, and of GID2 in strain No. 77, were identified as the cause of high malate production. Furthermore, complementary tests of these mutations indicated that the heterozygous nonsense mutation in GID2 was recessive. In contrast, the heterozygous nonsense mutation in GID4 was considered semi-dominant.


Fermentation ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 59 ◽  
Author(s):  
Tingting Liu ◽  
Shuangcheng Huang ◽  
Anli Geng

Cost-effective production of cellulosic ethanol requires robust microorganisms for rapid co-fermentation of glucose and xylose. This study aims to develop a recombinant diploid xylose-fermenting Saccharomyces cerevisiae strain for efficient conversion of lignocellulosic biomass sugars to ethanol. Episomal plasmids harboring codon-optimized Piromyces sp. E2 xylose isomerase (PirXylA) and Orpinomyces sp. ukk1 xylose (OrpXylA) genes were constructed and transformed into S. cerevisiae. The strain harboring plasmids with tandem PirXylA was favorable for xylose utilization when xylose was used as the sole carbon source, while the strain harboring plasmids with tandem OrpXylA was beneficial for glucose and xylose cofermentation. PirXylA and OrpXylA genes were also individually integrated into the genome of yeast strains in multiple copies. Such integration was beneficial for xylose alcoholic fermentation. The respiration-deficient strain carrying episomal or integrated OrpXylA genes exhibited the best performance for glucose and xylose co-fermentation. This was partly attributed to the high expression levels and activities of xylose isomerase. Mating a respiration-efficient strain carrying the integrated PirXylA gene with a respiration-deficient strain harboring integrated OrpXylA generated a diploid recombinant xylose-fermenting yeast strain STXQ with enhanced cell growth and xylose fermentation. Co-fermentation of 162 g L−1 glucose and 95 g L−1 xylose generated 120.6 g L−1 ethanol in 23 h, with sugar conversion higher than 99%, ethanol yield of 0.47 g g−1, and ethanol productivity of 5.26 g L−1·h−1.


Author(s):  
Jian Zha ◽  
Miaomiao Yuwen ◽  
Weidong Qian ◽  
Xia Wu

Xylose is the second most abundant sugar in lignocellulosic hydrolysates. Transformation of xylose into valuable chemicals, such as plant natural products, is a feasible and sustainable route to industrializing biorefinery of biomass materials. Yeast strains, including Saccharomyces cerevisiae, Scheffersomyces stipitis, and Yarrowia lipolytica, display some paramount advantages in expressing heterologous enzymes and pathways from various sources and have been engineered extensively to produce natural products. In this review, we summarize the advances in the development of metabolically engineered yeasts to produce natural products from xylose, including aromatics, terpenoids, and flavonoids. The state-of-the-art metabolic engineering strategies and representative examples are reviewed. Future challenges and perspectives are also discussed on yeast engineering for commercial production of natural products using xylose as feedstocks.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Bruna Inez Carvalho Figueiredo ◽  
Margarete Alice Fontes Saraiva ◽  
Paloma Patrick de Souza Pimenta ◽  
Miriam Conceição de Souza Testasicca ◽  
Geraldo Magela Santos Sampaio ◽  
...  

ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in the use of breeding/hybridization techniques to generate yeast strains that would be appropriate for producing new lager beers by exploring the capacity of cachaça yeast strains to flocculate and to ferment maltose at low temperature, with the concomitant production of flavoring compounds.


2016 ◽  
Vol 81 (13) ◽  
pp. 1650-1668 ◽  
Author(s):  
M. A. Eldarov ◽  
S. A. Kishkovskaia ◽  
T. N. Tanaschuk ◽  
A. V. Mardanov

Sign in / Sign up

Export Citation Format

Share Document