scholarly journals Gene Expression Changes and Anti-proliferative Effect of Noni (Morinda Citrifolia) Fruit Extract Analysed by Real Time-PCR

Molekul ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Hermansyah Hermansyah ◽  
Susilawati Susilawati

To elucidate the anti-proliferative effect of noni (Morinda citrifolia) fruit extract for a Saccharomyces cerevisiae model organism, analysis of gene expression changes related to cell cycle associated with inhibition effect of noni fruit extract was carried out. Anti-proliferative of noni fruit extract was analyzed using gene expression changes of Saccharomyces cerevisiae (strains FY833 and BY4741).  Transcriptional analysis of genes that play a role in cell cycle was conducted by growing cells on YPDAde broth medium containing 1% (w/v) noni fruit extract, and then subjected using quantitative real-time polymerase chain reaction (RT-PCR).  Transcriptional level of genes CDC6 (Cell Division Cycle-6), CDC20 (Cell Division Cycle-20), FAR1 (Factor ARrest-1), FUS3 (FUSsion-3), SIC1 (Substrate/Subunit Inhibitor of Cyclin-dependent protein kinase-1), WHI5 (WHIskey-5), YOX1 (Yeast homeobOX-1) and YHP1 (Yeast Homeo-Protein-1) increased, oppositely genes expression of DBF4 (DumbBell Forming), MCM1 (Mini Chromosome Maintenance-1) and TAH11 (Topo-A Hypersensitive-11) decreased, while the expression level of genes CDC7 (Cell Division Cycle-7), MBP1 (MIul-box Binding Protein-1) and SWI6 (SWItching deficient-6) relatively unchanged. These results indicated that gene expression changes might associate with anti-proliferative effect from noni fruit extract. These gene expressions changes lead to the growth inhibition of S.cerevisiae cell because of cell cycle defect.

1992 ◽  
Vol 12 (12) ◽  
pp. 5455-5463 ◽  
Author(s):  
K B Freeman ◽  
L R Karns ◽  
K A Lutz ◽  
M M Smith

The promoters of the Saccharomyces cerevisiae histone H3 and H4 genes were examined for cis-acting DNA sequence elements regulating transcription and cell division cycle control. Deletion and linker disruption mutations identified two classes of regulatory elements: multiple cell cycle activation (CCA) sites and a negative regulatory site (NRS). Duplicate 19-bp CCA sites are present in both the copy I and copy II histone H3-H4 promoters arranged as inverted repeats separated by 45 and 68 bp. The CCA sites are both necessary and sufficient to activate transcription under cell division cycle control. A single CCA site provides cell cycle control but is a weak transcriptional activator, while an inverted repeat comprising two CCA sites provides both strong transcriptional activation and cell division cycle control. The NRS was identified in the copy I histone H3-H4 promoter. Deletion or disruption of the NRS increased the level of the histone H3 promoter activity but did not alter the cell division cycle periodicity of transcription. When the CCA sites were deleted from the histone promoter, the NRS element was unable to confer cell division cycle control on the remaining basal level of transcription. When the NRS element was inserted into the promoter of a foreign reporter gene, transcription was constitutively repressed and did not acquire cell cycle regulation.


2010 ◽  
Vol 21 (13) ◽  
pp. 2161-2171 ◽  
Author(s):  
Kin Chan ◽  
Jesse P. Goldmark ◽  
Mark B. Roth

The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.


2002 ◽  
Vol 22 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Cong-Jun Li ◽  
Melvin L. DePamphilis

ABSTRACT Previous studies have shown that changes in the affinity of the hamster Orc1 protein for chromatin during the M-to-G1 transition correlate with the activity of hamster origin recognition complexes (ORCs) and the appearance of prereplication complexes at specific sites. Here we show that Orc1 is selectively released from chromatin as cells enter S phase, converted into a mono- or diubiquitinated form, and then deubiquitinated and re-bound to chromatin during the M-to-G1 transition. Orc1 is degraded by the 26S proteasome only when released into the cytosol, and peptide additions to Orc1 make it hypersensitive to polyubiquitination. In contrast, Orc2 remains tightly bound to chromatin throughout the cell cycle and is not a substrate for ubiquitination. Since the concentration of Orc1 remains constant throughout the cell cycle, and its half-life in vivo is the same as that of Orc2, ubiquitination of non-chromatin-bound Orc1 presumably facilitates the inactivation of ORCs by sequestering Orc1 during S phase. Thus, in contrast to yeast (Saccharomyces cerevisiae and Schizosaccharomyces pombe), mammalian ORC activity appears to be regulated during each cell cycle through selective dissociation and reassociation of Orc1 from chromatin-bound ORCs.


1992 ◽  
Vol 12 (12) ◽  
pp. 5455-5463 ◽  
Author(s):  
K B Freeman ◽  
L R Karns ◽  
K A Lutz ◽  
M M Smith

The promoters of the Saccharomyces cerevisiae histone H3 and H4 genes were examined for cis-acting DNA sequence elements regulating transcription and cell division cycle control. Deletion and linker disruption mutations identified two classes of regulatory elements: multiple cell cycle activation (CCA) sites and a negative regulatory site (NRS). Duplicate 19-bp CCA sites are present in both the copy I and copy II histone H3-H4 promoters arranged as inverted repeats separated by 45 and 68 bp. The CCA sites are both necessary and sufficient to activate transcription under cell division cycle control. A single CCA site provides cell cycle control but is a weak transcriptional activator, while an inverted repeat comprising two CCA sites provides both strong transcriptional activation and cell division cycle control. The NRS was identified in the copy I histone H3-H4 promoter. Deletion or disruption of the NRS increased the level of the histone H3 promoter activity but did not alter the cell division cycle periodicity of transcription. When the CCA sites were deleted from the histone promoter, the NRS element was unable to confer cell division cycle control on the remaining basal level of transcription. When the NRS element was inserted into the promoter of a foreign reporter gene, transcription was constitutively repressed and did not acquire cell cycle regulation.


2012 ◽  
Vol 11 (12) ◽  
pp. 1496-1502 ◽  
Author(s):  
Kindra King ◽  
Michelle Jin ◽  
Daniel Lew

ABSTRACT The morphogenesis checkpoint in Saccharomyces cerevisiae couples bud formation to the cell division cycle by delaying nuclear division until cells have successfully constructed a bud. The cell cycle delay is due to the mitosis-inhibitory kinase Swe1p, which phosphorylates the cyclin-dependent kinase Cdc28p. In unperturbed cells, Swe1p is degraded via a mechanism thought to involve its tethering to a cortical scaffold of septin proteins at the mother-bud neck. In cells that experience stresses that delay bud formation, Swe1p is stabilized, accumulates, and promotes a G 2 delay. The tethering of Swe1p to the neck requires two regulators, called Hsl1p and Hsl7p. Hsl1p interacts with septins, and Hsl7p interacts with Swe1p; tethering occurs when Hsl1p interacts with Hsl7p. Here we created a version of Swe1p that is artificially tethered to the neck by fusion to a septin so that Swe1p no longer requires Hsl1p or Hsl7p for its localization to the neck. We show that the interaction between Hsl1p and Hsl7p, required for normal Swe1p degradation, is no longer needed for septin-Swe1p degradation, supporting the idea that the Hsl1p-Hsl7p interaction serves mainly to tether Swe1p to the neck. However, both Hsl1p and Hsl7p are still required for Swe1p degradation, implying that these proteins play additional roles beyond localizing Swe1p to the neck.


2004 ◽  
Vol 3 (4) ◽  
pp. 944-954 ◽  
Author(s):  
Richard Bulmer ◽  
Aline Pic-Taylor ◽  
Simon K. Whitehall ◽  
Kate A. Martin ◽  
Jonathan B. A. Millar ◽  
...  

ABSTRACT In eukaryotes the regulation of gene expression plays a key role in controlling cell cycle progression. Here, we demonstrate that a forkhead transcription factor, Fkh2, regulates the periodic expression of cdc15 + and spo12 + in the M and G1 phases of the cell division cycle in the fission yeast Schizosaccharomyces pombe. We also show that Fkh2 is important for several cell cycle processes, including cell morphology and cell separation, nuclear structure and migration, and mitotic spindle function. We find that the expression of fkh2 + is itself regulated in a cell cycle-dependent manner in G1 coincident with the expression of cdc18 +, a Cdc10-regulated gene. However, fkh2 + expression is independent of Cdc10 function. Fkh2 was found to be phosphorylated during the cell division cycle, with a timing that suggests that this posttranslational modification is important for cdc15 + and spo12 + expression. Related forkhead proteins regulate G2 and M phase-specific gene expression in the evolutionarily distant Saccharomyces cerevisiae, suggesting that these proteins play conserved roles in regulating cell cycle processes in eukaryotes.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1625
Author(s):  
Ajinkya R. Limkar ◽  
Justin B. Lack ◽  
Albert C. Sek ◽  
Caroline M. Percopo ◽  
Kirk M. Druey ◽  
...  

Acute respiratory virus infections can have profound and long-term effects on lung function that persist even after the acute responses have fully resolved. In this study, we examined gene expression by RNA sequencing in the lung tissue of wild-type BALB/c mice that were recovering from a sublethal infection with the pneumonia virus of mice (PVM), a natural rodent pathogen of the same virus family and genus as the human respiratory syncytial virus. We compared these responses to gene expression in PVM-infected mice treated with Lactobacillus plantarum, an immunobiotic agent that limits inflammation and averts the negative clinical sequelae typically observed in response to acute infection with this pathogen. Our findings revealed prominent differential expression of inflammation-associated genes as well as numerous genes and gene families implicated in mitosis and cell-cycle regulation, including cyclins, cyclin-dependent kinases, cell division cycle genes, E2F transcription factors, kinesins, centromere proteins, and aurora kinases, among others. Of particular note was the differential expression of the cell division cycle gene Cdc20b, which was previously identified as critical for the ex vivo differentiation of multi-ciliated cells. Collectively, these findings provided us with substantial insight into post-viral repair processes and broadened our understanding of the mechanisms underlying Lactobacillus-mediated protection.


1991 ◽  
Vol 11 (10) ◽  
pp. 5301-5311
Author(s):  
J A Brown ◽  
S G Holmes ◽  
M M Smith

The chromatin structures of two well-characterized autonomously replicating sequence (ARS) elements were examined at their chromosomal sites during the cell division cycle in Saccharomyces cerevisiae. The H4 ARS is located near one of the duplicate nonallelic histone H4 genes, while ARS1 is present near the TRP1 gene. Cells blocked in G1 either by alpha-factor arrest or by nitrogen starvation had two DNase I-hypersensitive sites of about equal intensity in the ARS element. This pattern of DNase I-hypersensitive sites was altered in synchronous cultures allowed to proceed into S phase. In addition to a general increase in DNase I sensitivity around the core consensus sequence, the DNase I-hypersensitive site closest to the core consensus became more nuclease sensitive than the distal site. This change in chromatin structure was restricted to the ARS region and depended on replication since cdc7 cells blocked near the time of replication initiation did not undergo the transition. Subsequent release of arrested cdc7 cells restored entry into S phase and was accompanied by the characteristic change in ARS chromatin structure.


Sign in / Sign up

Export Citation Format

Share Document