scholarly journals A Case Study on Large Deformation Failure Mechanism of Coal given Chamber and Invention of a New Wall-Mounted Coal Bunker in Xiashijie Coal Mine with Soft, Swelling Floor Rock

Author(s):  
Xingkai Wang ◽  
Wenbing Xie ◽  
Shengguo Jing ◽  
Jianbiao Bai ◽  
Zhili Su

Serious damage caused by floor heave in the coal given chamber of a vertical coal bunker is one of the challenges faced in underground coal mines. Engineering practice shows that it is more difficult to maintain the coal given chamber (CGC) than a roadway. More importantly, repairing the CGC during mining practice will pose major safety risks and reduce production. Based on the case of the serious collapse that occurred in the bearing structure of the CGC at the lower part of the 214# coal bunker in Xiashijie mine, China, this work analysed (i) the main factors influencing floor heave and (ii) the failure mechanism of the load-bearing structure in the CGC using FLAC2D numerical models and expansion experiment. The analysis results indicate that: the floor heave, caused mainly by mine water, is the basic reason leading to the instability and repeated failure of the CGC in the 214# coal bunker. Then a new coal bunker, without building the CGC, is proposed and put into practice to replace the 214# coal bunker. The FLAC3D software program is adopted to establish the numerical model of the wall-mounted coal bunker (WMCB), and the stability of the rock surrounding the WMCB is simulated and analysed. The results show that: (1) the rock surrounding the sandstone segment is basically stable. (2) The surrounding rock in the coal seam segment, which moves into the inside of the bunker, is the main zone of deformation for the entire rock mass surrounding the bunker. Then the surrounding rock is controlled effectively by means of high-strength bolt–cable combined supporting technology. According to the geological conditions of the WMCB, the self-bearing system, which includes (i) H-steel beams, (ii) H-steel brackets, and (iii) self-locking anchor cables, is established and serves as a substitute for the CGC to transfer the whole weight of the bunker to stable surrounding rock. The stability of the new coal bunker has been verified by field testing, and the coal mine has gained economic benefit to a value of 158.026174 million RMB over three years. The new WMCB thus made production more effective and can provide helpful references for construction of vertical bunkers under similar geological conditions.

2021 ◽  
Author(s):  
Jindong Cao ◽  
Xiaojie Yang ◽  
Ruifeng Huang ◽  
Qiang Fu ◽  
Yubing Gao

Abstract The high stress of the surrounding rock of Hexi Coal Mine easily leads to severe deformation of the retracement channel and the appearance of the mine pressure during the retreat severely affects the stability of the roadway. In order to solve the above problems, a roadway surrounding rock control technology is proposed and tested. The bidirectional energy-concentrated tensile blasting technology is used to perform directional cutting to cut off the stress propagation path. Firstly, the deformation mechanism of the roof is analyzed by establishing the deformation mechanical model of the roof of the retracement channel. Then, according to the geological conditions of working face 3314 and theoretical calculation, the key parameters of roof cutting and pressure releasing of retracement channel are determined, and through the numerical analysis of its cutting effect, the length of cutting seam is 11.5m, and the cutting angle is 10°. Finally, a field test is carried out on the retracement channel of 3314 working face to verify the effect of roof cutting. The results show that the deformation of the retracement channel and the main roadway is very small. In the process of connecting the working face and the retracement channel, the maximum roof to floor convergence is 141mm, and the two sides convergence is 79mm. After the hydraulic support was retracted, the maximum roof to floor convergence of the surrounding rock is 37 mm, and the two sides convergence is 33mm. The roof cutting and pressure releasing of the retracement channel ensures the safe evacuation of the equipment and the stability of the main roadway. The cutting effect is obvious for the release of pressure, which is of great significance to engineering practice.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Junwen Zhang ◽  
Yulin Li

There are series of problems faced by most of the coal mines in China, ranging from low-coal recovery rate and strained replacement of working faces to gas accumulation in the upper corner of coalfaces. Based on the gob-side entry retaining at the No. 18205 working face in a coal mine in Shanxi Province, theoretical analysis, numerical simulation, and engineering practice were comprehensively used to study the mechanical characteristics of the influence of the width of the filling body beside the roadway and the stability of surrounding rock in a high-gas-risk mine. The rational width of the filling body beside the roadway was determined, and a concrete roadway-side support with a headed reinforcement-integrated strengthening technique was proposed, which have been applied in engineering practice. The stability of the filling body beside the roadway is mainly influenced by the movement of the overlying rock strata, and the stability of the surrounding rock can be improved effectively by rationally determining the width of the filling body beside the roadway. When the width of the roadway-side filling body is 2.5 m, the surrounding rock convergence of the gob-side entry retaining is relatively small at only 5% of the convergence ratio. It has been shown that the figure for roof separation is relatively low, and strata behaviors are relatively alleviated and gas density do not exceed the limit, which are the best results of gob-side entry retaining. The results of this research can provide theoretical guidance for excavation of coal mines with similar geological conditions and have some referential significance to safety and efficient production in coal mines.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 381 ◽  
Author(s):  
Xingping Lai ◽  
Huicong Xu ◽  
Pengfei Shan ◽  
Yanlei Kang ◽  
Zeyang Wang ◽  
...  

The stability of the surrounding rock is the key problem regarding the normal use of coal mine roadways, and the floor heave of roadways is one of the key factors that can restrict high-yield and high-efficiency mining. Based on the 1305 auxiliary transportation roadway geological conditions in the Dananhu No. 1 Coal Mine, Xinjiang, the mechanism of roadway floor heave was studied by field geological investigation, theoretical analysis, and numerical simulation. We think that the surrounding rock of the roadway presents asymmetrical shrinkage under the original support condition, and it is the extrusion flow type floor heave. The bottom without support and influence of mining are the important causes of floor heave. Therefore, the optimal support scheme is proposed and verified. The results show that the maximum damage depth of the roadway floor is 3.2 m, and the damage depth of the floor of roadway ribs is 3.05 m. The floor heave was decreased from 735 mm to 268 mm, and the force of the rib bolts was reduced from 309 kN to 90 kN after using the optimization supporting scheme. This scheme effectively alleviated the “squeeze” effect of the two ribs on the soft rock floor, and the surrounding rock system achieves long-term stability after optimized support. This provides scientific guidance for field safe mining.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yue Yuan ◽  
Weijun Wang ◽  
Shuqing Li ◽  
Yongjian Zhu

In order to reveal the failure mechanism of the deep roadway under mining-induced pressure in coal mine, the boundary equations for the plastic zone around the deep roadway were deduced, and then the evolution laws for morphology of the plastic zone and the relationship between the morphological indexes and the stability of surrounding rock were discussed. The results show that, for the deep roadway, the effect of mining on the plastic zone is more sensitive than that on the shallow one. Even if the changes of mining influence are small, they may also cause extremely serious plastic failure of surrounding rock masses, leading to the sudden instability of the roadway. When the plastic wings of the plastic zone are approximately perpendicular to the roof, floor, or sidewall, the large deformation and failure of the deep roadway are very likely to occur. Compared with the index of the uniformity coefficient, the irregular shape coefficient can be used to better characterize the differences in the plastic zone morphology. Finally, a case study was provided to apply the principles for the formation and extension of a butterfly-shaped plastic zone.


2014 ◽  
Vol 672-674 ◽  
pp. 1818-1822
Author(s):  
Bao Sheng Song ◽  
Dan Yang Jing ◽  
Shi Ting Zhu ◽  
Lin Lin Chen

For the caving danger of the haulage roadway with thin and broken coal roof in Baoxin coal mine, the combined support technology with bolt, steel mesh and anchor was proposed. According to the geological conditions of the mine, the appropriate support program was determined. The simulation analysis by FLAC3D software showed that the program could effectively increase the roadway confining pressure, reduce roadway displacement and deformation, and thus keep the stability of the surrounding rock. Site practice showed that the support program was feasible and the control effect was good.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ai Chen ◽  
Qing Ma ◽  
Xuesheng Liu

With the continuous increase of mining depth and complex mining geological conditions, the mileage of roadways in underground engineering such as coal mine is increasing year by year. Complex conditions lead to different floor heave failure laws, and the control technology and strategy should be changed accordingly. How to evaluate the damage degree of floor heave under different conditions has become an urgent problem. Firstly, this paper makes a statistical analysis on the main evaluation indexes of the damage degree of roadway floor heave. Then, the fuzzy comprehensive clustering method is used to establish the classification method of floor heave damage degree, taking the floor heave amount, floor rock fragmentation degree, coal pillar size, buried depth, and floor lithology as evaluation indexes. The damage degree of floor heave can be divided into five types: light type, obvious type, severe type, destructive type, and extremely severe type. Finally, the rationality and accuracy of the method are verified by the measured value and evaluation value of No. 130203 roadway in the Zaoquan coal mine. The results can provide reference for the evaluation of the damage degree of the floor rock in similar condition mine and provide guidance for the design of the support and stability control of the failure of the roadway floor heave.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Qiangling Yao ◽  
Xuehua Li ◽  
Fan Pan ◽  
Teng Wang ◽  
Guang Wang

The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD). We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xianyu Xiong ◽  
Jun Dai ◽  
Yibo Ouyang ◽  
Pan Shen

AbstractThe deformation and failure forms of inclined coal seam roadway under the joint action of dip angle and various geological conditions are complex, and there is a lack of targeted support measures, which brings great problems to the stability control of roadway surrounding rock. In order to safely and economically mine inclined coal seams, taking the engineering geology of Shitanjing No. 2 mining area as the background, and the physical similarity model of right-angle trapezoidal roadway in inclined coal seam, in which the non-contact digital image correlation (DIC) technology and the stress sensor is employed to provide full-field displacement and stress measurements. The deformation control technology of the roadway surrounding rock was proposed, verified by numerical simulation and applied to engineering practice. The research results show that the stress and deformation failure of surrounding rock in low sidewall of roadway are greater than those in high sidewall, showing asymmetric characteristics, and the maximum stress concentration coefficients of roadway sidewall, roof and floor are 4.1, 3.4 and 2.8, respectively. A concept of roadway "cyclic failure" mechanism is proposed that is, the cyclic interaction of the two sidewalls, the sharp angles and roof aggravated the failure of roadway, resulting in the overall instability of roadway. The roadway sidewall is serious rib spalling, the roof is asymmetric "Beret" type caving arch failure, and the floor is slightly bulging. On this basis, the principle of roadway deformation control is revealed and asymmetric support design is adopted, and the deformation of roadway is controlled, which support scheme is effective.


2012 ◽  
Vol 170-173 ◽  
pp. 3512-3515
Author(s):  
Ju Cai Chang ◽  
Guang Xiang Xie

Prestressed anchor-cables supporting technology has become the primary measure for reinforcing the roadway of deep coal mine and complex geological conditions. In this paper, fast Lagrangian analysis of continua (FLAC3D) code is used to analyze the laws of stress, deformation and failure of surrounding rock with and without roadway supporting by anchor-cables. The supporting action mechanism and effect of anchor-cables have been investigated into systematically. The results show that the anchor-cables supporting is adopted at reasonable positions of the roadway in good time which can improve the stress states of deep surrounding rock, decrease the range of failure zone around the roadway, control the roadway deformation effectively and maintain the stability of roadway.


2019 ◽  
Vol 136 ◽  
pp. 04023
Author(s):  
Ming Zhao ◽  
Ke Li ◽  
Hong Yan Guo ◽  
KaiCheng Hua

Based on the special geological conditions of a tunnel in Qingyuan section of Huizhou-Zhanzhou Expressway, FLAC3d numerical simulation software is used to simulate the rheological properties and instability of surrounding rock in large-section fully weathered sandstone section, and the stability and loss of surrounding rock are analyzed. The deformation of the dome and the face at steady state is analyzed. It is found that: 1) when the surrounding rock is in a stable state, the deformation curve of the dome is smooth. When the surrounding rock of the face is unstable, the front of the face appears ahead. Deformation should be first strengthened on the surrounding rock in front of the face. 2) The arched foot is an important part of the instability of the surrounding rock. In order to prevent the expansion of the collapsed part, the arched part should be reinforced. 3) In order to obtain the limit state of surrounding rock stability, the strength of surrounding rock is reduced, and the strength reduction coefficient corresponding to the displacement sudden point is taken as the safety factor of rock stability around the hole, and the stability safety coefficients of surrounding rock of each construction step are greater than 1.2. 4) The dynamic standard values of deformation control in the whole construction stage are obtained by analyzing the deformation curves of each data monitoring point with time in the corresponding time period of each construction step.


Sign in / Sign up

Export Citation Format

Share Document