scholarly journals Failure Mechanism for Surrounding Rock of Deep Circular Roadway in Coal Mine Based on Mining-Induced Plastic Zone

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yue Yuan ◽  
Weijun Wang ◽  
Shuqing Li ◽  
Yongjian Zhu

In order to reveal the failure mechanism of the deep roadway under mining-induced pressure in coal mine, the boundary equations for the plastic zone around the deep roadway were deduced, and then the evolution laws for morphology of the plastic zone and the relationship between the morphological indexes and the stability of surrounding rock were discussed. The results show that, for the deep roadway, the effect of mining on the plastic zone is more sensitive than that on the shallow one. Even if the changes of mining influence are small, they may also cause extremely serious plastic failure of surrounding rock masses, leading to the sudden instability of the roadway. When the plastic wings of the plastic zone are approximately perpendicular to the roof, floor, or sidewall, the large deformation and failure of the deep roadway are very likely to occur. Compared with the index of the uniformity coefficient, the irregular shape coefficient can be used to better characterize the differences in the plastic zone morphology. Finally, a case study was provided to apply the principles for the formation and extension of a butterfly-shaped plastic zone.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
MingZheng Zhu ◽  
Yugui Yang ◽  
Feng Gao ◽  
Juan Liu

The deformation and failure of tunnel surrounding rock is the result of tunnel excavation disturbance and rock stress release. When the local stress of surrounding rock exceeds the elastic limit of rock mass, the plastic analysis of surrounding rock must be carried out to judge the stability of tunnel. In this study, the Lade–Duncan yield criterion is used to calculate the analytic solutions for the surrounding rock in a tunnel, and the radius and displacement of the plastic zone are deduced using an equilibrium equation. The plastic zone radius and displacement based on Lade–Duncan criterion and Mohr–Coulomb criterion were compared by using single-factor analysis method under the different internal friction angles, in situ stresses, and support resistances. The results show that the solutions of the radius and displacement of plastic zone calculated by the Lade–Duncan criterion are close to those of Mohr–Coulomb criterion under the high internal friction angle and support resistance or low in situ rock stress; however, the radius and displacement of the plastic zone calculated by the Lade–Duncan criterion are larger under normal circumstances, and the Lade–Duncan criterion is more applicable to the stability analysis of the surrounding rock in a tunnel.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jicheng Feng ◽  
Shuaifeng Yin ◽  
Zhiheng Cheng ◽  
Jianjun Shi ◽  
Haoyu Shi ◽  
...  

Aiming at the problem of surrounding rock deformation and failure of mining roadway and its control, a mechanical model of the circular roadway under the mining environment is established, and the implicit equation of the plastic zone boundary is derived. By analyzing the morphologic evolution law of the surrounding rock plastic zone in the mining roadway, the key factors affecting the morphologic change of the plastic zone are obtained, that is, the magnitude and direction of principal stress. The influence law of the magnitude and direction of principal stress on the plastic zone of the mining roadway is analyzed by using numerical simulation software, and the deformation and failure mechanism of surrounding rock of the mining roadway is revealed. The results showed that the size and morphology of the plastic zone were closely related to the confining pressure ratio (η). Taking the boundary of η valuing 1, the larger or smaller η value was, the more serious the deformation and failure of surrounding rock would be; the morphology of the plastic zone changed with the deflection of the principal stress, with the location of the maximum plastic zone influenced by the principal stress direction. For the surrounding rock control in the mining-influenced roadway, it is advised to take the following methods: firstly, it is necessary to consider how to reduce or remove the influence of mining on surrounding rock, improve the stress environment of surrounding rock, and reduce the failure depth of the plastic zone, so as to better maintain the roadway. Secondly, in view of the deformation and failure characteristics of the mining roadway, the fractional support method of “yielding first and then resisting” should be adopted, which applies the cable supplement support after mining instead of the one-off high-strength support during roadway excavation, so as to control the malignant expansion of the surrounding rock plastic zone and prevent roof falling accidents.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Bangyou Jiang ◽  
Lianguo Wang ◽  
Yinlong Lu ◽  
Shitan Gu ◽  
Xiaokang Sun

This paper presented a case study of the failure mechanisms and support design for deep composite soft rock roadway in the Yangcheng Coal Mine of China. Many experiments and field tests were performed to reveal the failure mechanisms of the roadway. It was found that the surrounding rock of the roadway was HJS complex soft rock that was characterized by poor rock quality, widespread development of joint fissures, and an unstable creep property. The major horizontal stress, which was almost perpendicular to the roadway, was 1.59 times larger than the vertical stress. The weak surrounding rock and high tectonic stress were the main internal causes of roadway instabilities, and the inadequate support was the external cause. Based on the failure mechanism, a new support design was proposed that consisted of bolting, cable, metal mesh, shotcrete, and grouting. A field experiment using the new design was performed in a roadway section approximately 100 m long. Detailed deformation monitoring was conducted in the experimental roadway sections and sections of the previous roadway. The monitoring results showed that deformations of the roadway with the new support design were reduced by 85–90% compared with those of the old design. This successful case provides an important reference for similar soft rock roadway projects.


Author(s):  
Xingkai Wang ◽  
Wenbing Xie ◽  
Shengguo Jing ◽  
Jianbiao Bai ◽  
Zhili Su

Serious damage caused by floor heave in the coal given chamber of a vertical coal bunker is one of the challenges faced in underground coal mines. Engineering practice shows that it is more difficult to maintain the coal given chamber (CGC) than a roadway. More importantly, repairing the CGC during mining practice will pose major safety risks and reduce production. Based on the case of the serious collapse that occurred in the bearing structure of the CGC at the lower part of the 214# coal bunker in Xiashijie mine, China, this work analysed (i) the main factors influencing floor heave and (ii) the failure mechanism of the load-bearing structure in the CGC using FLAC2D numerical models and expansion experiment. The analysis results indicate that: the floor heave, caused mainly by mine water, is the basic reason leading to the instability and repeated failure of the CGC in the 214# coal bunker. Then a new coal bunker, without building the CGC, is proposed and put into practice to replace the 214# coal bunker. The FLAC3D software program is adopted to establish the numerical model of the wall-mounted coal bunker (WMCB), and the stability of the rock surrounding the WMCB is simulated and analysed. The results show that: (1) the rock surrounding the sandstone segment is basically stable. (2) The surrounding rock in the coal seam segment, which moves into the inside of the bunker, is the main zone of deformation for the entire rock mass surrounding the bunker. Then the surrounding rock is controlled effectively by means of high-strength bolt–cable combined supporting technology. According to the geological conditions of the WMCB, the self-bearing system, which includes (i) H-steel beams, (ii) H-steel brackets, and (iii) self-locking anchor cables, is established and serves as a substitute for the CGC to transfer the whole weight of the bunker to stable surrounding rock. The stability of the new coal bunker has been verified by field testing, and the coal mine has gained economic benefit to a value of 158.026174 million RMB over three years. The new WMCB thus made production more effective and can provide helpful references for construction of vertical bunkers under similar geological conditions.


2012 ◽  
Vol 170-173 ◽  
pp. 3512-3515
Author(s):  
Ju Cai Chang ◽  
Guang Xiang Xie

Prestressed anchor-cables supporting technology has become the primary measure for reinforcing the roadway of deep coal mine and complex geological conditions. In this paper, fast Lagrangian analysis of continua (FLAC3D) code is used to analyze the laws of stress, deformation and failure of surrounding rock with and without roadway supporting by anchor-cables. The supporting action mechanism and effect of anchor-cables have been investigated into systematically. The results show that the anchor-cables supporting is adopted at reasonable positions of the roadway in good time which can improve the stress states of deep surrounding rock, decrease the range of failure zone around the roadway, control the roadway deformation effectively and maintain the stability of roadway.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jucai Chang ◽  
Kai He ◽  
Zhiqiang Yin ◽  
Wanfeng Li ◽  
Shihui Li ◽  
...  

In view of the influence of mining stress on the stability of the surrounding rock of inclined roof mining roadways in deep mines, the surrounding rock stability index is defined and solved based on the rock strength criterion and the stress distribution. The mining roadway of the 17102(3) working face of the Pansan Coal Mine is used as the engineering background and example. The surrounding rock’ stabilities under the conditions of no support and bolt support are analyzed according to the surrounding rock’s stability index and the deformation data. The results show that the areas of low wall and high wall instability are 1.68 m2 and 2.12 m2, respectively, and the low wall is more stable than the high wall; the areas of the roof and floor instability are 0.33 m2 and 0.35 m2, respectively, and the roof and floor are more stable than the two sides. During mining, the area of instability greatly increases at first, then decreases to 0, and reaches a maximum value at the peak of the abutment pressure. The stability of the surrounding rock decreases first and then increases. Compared with the end anchoring bolt support, the full-length anchoring bolt support reduces the area of instability to a greater extent, and the full-length anchoring bolt support effect is better. The surrounding rock in the end anchoring zone and the full-length anchoring zone began to deform significantly at 200 m and 150 m from the working face, respectively. This indicates that the control effect of the full-length anchoring bolt support is better and verifies the rationality of the surrounding rock stability index to describe the instability characteristics. This research method can provide a theoretical reference for analysis of the stability characteristics and support design of different cross-section roadways.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Huabin Zhang ◽  
Qingqing Zhang ◽  
Laigui Wang

In this study, an analytical solution of stress, strain, and displacement, in the elastic and plastic zone is proposed. The solution is derived on the basis of ideal elastoplastic mechanical model of spherical salt cavern with shear dilatation behavior, by adopting Hoek-Brown (H-B) criterion. The solution obtains not only in small and large strain stage but also in creep stage. The proposed solution is validated, by comparison of the obtained results with numerical results in FLAC3D. The results indicate that the result obtained adopting the H-B criterion is closer to that one obtained adopting the Mohr-Coulomb (M-C). The H-B criterion is more applicable for the salt cavern construction as it considers the structural characteristics of the rock salt formation. The displacement difference obtained by two different methods decreases with the increase of GSI or running pressure, but it increases with the enlarged angle of dilation. The influence of different assumptions of elastic strain of plastic zone on displacements is more significant under large strain conditions. The influence of the angle of dilation on displacements is more obvious when the elastic strain of plastic zone is given to stationary values, and the influence degree increases with the enlarged angle of dilation. Under the same conditions, the creep displacement decreases with the increase of GSI, and both the creep displacement and the effect degree enhance with the enlarged dilation angle. The proposed solutions can be used in the stability analysis of surrounding rock in the construction and operation of salt cavern storage.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 628 ◽  
Author(s):  
Junwen Zhang

Split-level longwall gob-side entry (SLGE) has been applied as a special form of small gate pillar mining (or non-coal pillar mining) in thick coal seams. The stability of the coal pillar directly affects the rationality of the layout of the SLGE. Starting from the mining-induced influence around the SLGE, this paper compares the mechanical properties of coal under different mining effects, and studies the rationality of “zero pillar” location against the Xiegou coal mine. The study shows that the key to success of the application of the SLGE is the existence of an intact zone within the triangular coal pillar in spite of double disturbances due to tunneling and coal mining extraction. Laboratory testing shows that the density and uniaxial compressive strength of rock specimens obtained from the triangular coal pillar are smaller than that from the other part of the panel which is concluded to be due to the varied degree of mining-induced influence. The numerical modeling results show that most of the triangular coal pillar is intact after extraction of the panel, and that the peak stress is located in the solid coal beyond the triangular coal pillar. The plastic zone of the triangular coal pillar is only about 1 m after the excavation of the tail gate of the next split-level panel. The physical modeling shows that the tail gate of the next panel is in the destressed zone with only a very small stress fluctuation during the extraction of the next panel. The study shows that the location of the SLGE at Xiegou coal mine is reasonable. SLGE is preferable for ultra-thick coal seams.


2011 ◽  
Vol 90-93 ◽  
pp. 1900-1903
Author(s):  
Fu Ming Wang ◽  
Xiao Long Li ◽  
Yan Hui Zhong ◽  
Xiao Guang Chen

Taking Chaijiazhuang Tunnel of Lingnan Expressway as project background, the stability analysis of surrounding rock was performed based on the coupled fluid-solid theory. The distributions of stress field, displacement field and plastic zone of rock mass after excavation of tunnel were discussed considering coupled effect between flow and stress under the condition of different rock level and tunnel depth. Compared with the calculation results of not considering coupling effect, the maximum deformation, maximum principle stress and plastic zone size of wall rock were obviously increased when considering coupling effect, which showed a remarkable influence of coupled fluid-solid effect on the stability of tunnel surrounding rock. Some conclusions were drawn and may provide some guidance to the design and construction of tunnels in water-rich strata.


Sign in / Sign up

Export Citation Format

Share Document