scholarly journals MERS-CoV: Understanding the Latest Human Coronavirus Threat

Author(s):  
Aasiyah Chafekar ◽  
Burtram C. Fielding

Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012 a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure, (ii) clinical features, (iii) diagnosis of infection and (iv) treatment and vaccine development.

Author(s):  
Aasiyah Chafekar ◽  
Burtram C. Fielding

Human coronaviruses cause both upper and lower respiratory tract infections in humans. In 2012 a sixth human coronavirus (hCoV) was isolated from a patient presenting with severe respiratory illness. The 60-year-old man died as a result of renal and respiratory failure after admission to a hospital in Jeddah, Saudi Arabia. The aetiological agent was eventually identified as a coronavirus and designated Middle East respiratory syndrome coronavirus (MERS-CoV). MERS-CoV has now been reported in more than 27 countries across the Middle East, Europe, North Africa and Asia. As of July 2017, 2040 MERS-CoV laboratory confirmed cases, resulting in 712 deaths, were reported globally, with a majority of these cases from the Arabian Peninsula. This review summarises the current understanding of MERS-CoV, with special reference to the (i) genome structure, (ii) clinical features, (iii) diagnosis of infection and (iv) treatment and vaccine development.


Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 937
Author(s):  
Palesa Makoti ◽  
Burtram C. Fielding

Seven human coronaviruses (hCoVs) are known to infect humans. The most recent one, SARS-CoV-2, was isolated and identified in January 2020 from a patient presenting with severe respiratory illness in Wuhan, China. Even though viral coinfections have the potential to influence the resultant disease pattern in the host, very few studies have looked at the disease outcomes in patients infected with both HIV and hCoVs. Groups are now reporting that even though HIV-positive patients can be infected with hCoVs, the likelihood of developing severe CoV-related diseases in these patients is often similar to what is seen in the general population. This review aimed to summarize the current knowledge of coinfections reported for HIV and hCoVs. Moreover, based on the available data, this review aimed to theorize why HIV-positive patients do not frequently develop severe CoV-related diseases.


Author(s):  
Palesa Makoti ◽  
Burtram C. Fielding

Seven human coronaviruses (hCoVs) are known to infect humans. The most recent one, SARS-CoV-2, was isolated and identified in January 2020 from a patient presenting with severe respiratory illness in Wuhan, China. Even though viral coinfections have the potential to influence the resultant disease pattern in the host, very few studies have looked at the disease outcomes in patients infected with both HIV and hCoVs. Groups are now reporting that even though HIV-positive patients can be infected with hCoVs, the likelihood of developing severe CoV-related diseases in these patients is often similar to what is seen in the general population. This review aimed to summarize the current knowledge of coinfections reported for HIV and hCoVs. Moreover, based on the available data, this review aimed to theorize why HIV-positive patients do not frequently develop severe CoV-related diseases.


Author(s):  
Palesa Makoti ◽  
Burtram C. Fielding

Seven human coronaviruses are known to infect humans. The most recent one, SARS-CoV-2, was isolated and identified in January 2020 from a patient presenting with severe respiratory illness in Wuhan, China. Even though viral coinfections have the potential to influence the resultant disease pattern in the host, very few studies have looked at the disease outcomes in patients infected with both HIV and hCoVs. Groups are now reporting that even though HIV-positive patients can be infected with hCoVs, the likelihood of developing severe CoV-related diseases in these patients is often similar to what is seen in the general population. This review aimed to summarize the current knowledge of coinfections reported for the HIV and hCoVs. Also, based on the available data, this review aimed to theorize why HIV-positive patients do not frequently develop severe CoV-related diseases.


Author(s):  
Yogesh Chand Yadav ◽  
Ramakant Yadav ◽  
Sushant Kumar

The SARS-CoV-2 virus was first detected in Wuhan, China in December 2019 and was known to produce acute severe respiratory illness in humans which rapidly spread almost throughout the world within a few months. This human coronavirus has seven strains and they commonly produce illness in the nervous system, respiratory system and hepato- intestinal systems. This present review is an attempt to illustrate recent reports pertaining to the management of SARS-CoV-2. Further, it also highlights the diagnosis and clinical management of COVID-19. Various search engines like Scopus, Pubmed and WHO databases were accessed and literature on current advances about COVID-19 including structural features, replication, possible pathogenic, symptoms, diagnosis, prognosis, methods of prevention and possible therapeutic agents used for treatment of patients was reviewed. Current studies indicate that COVID-19 is very infectious with droplet transmission potential. The key modalities to prevent the infection is by keeping social distancing, respiratory/hand hygiene, detection of infection and subsequent quarantine of the infected persons. Presently, either no vaccine for prevention or specific treatments available, however, COVID-19 patients may be managed by using some repositioned drugs and symptomatic treatment.


Author(s):  
Sorush Niknamian

Background: Coronaviruses are a group of related viruses that cause diseases in mammals and birds. In humans, coronaviruses cause respiratory tract infections that can range from mild to lethal. Mild illnesses include some cases of the common cold, while more lethal varieties can cause SARS, MERS, and COVID-19. The outbreak was identified in Wuhan, China, in December 2019, declared to be a Public Health Emergency of International Concern on 30 January 2020, and recognized as a pandemic on 11 March 2020. Introduction: Coronaviruses are the subfamily Orthocoronavirinae, within the family of Coronaviridae; order Nidovirales, and realm Riboviria. They are enveloped viruses with a positive-sense single-stranded RNA genome and a nucleocapsid of helical symmetry. The genome size of coronaviruses is approximately from 26 to 32kilobases. Coronaviruses were first discovered in the 1930s and Human coronaviruses were discovered in the 1960s. The earliest ones studied were from human patients with the common cold, which were later named human coronavirus 229E and human coronavirus OC43. Other human coronaviruses have since been identified, including SARS-CoV in 2003, HCoV NL63 in 2004, HKU1 in 2005, MERS-CoV in 2012, and SARS-CoV-2 in 2019. Most of these have involved serious respiratory tract infections. Discussions & Results: Based on our multidisciplinary research, we have found the major cause and some treatments methods for fighting this powerful pathogen. The prime cause of COVID-19 is pushing the mitochondrial to lose MMP. A loss of the MMP by any mechanism leads to functional and structural collapse of the mitochondria and cell death. Mitophagy plays an important role in maintaining mitochondrial homeostasis, but can also eliminate healthy mitochondria in cases such as cell starvation, viral invasion, and erythroid cell differentiation. The mitochondrial fusion and fission are highly dynamic. Viruses specially COVID-19, interfere with these processes to distort mitochondrial dynamic to facilitate their proliferation. Thus, interfering with these processes promotes the interference of different cellular signaling pathways. The severe acute respiratory syndrome coronavirus (SARS-CoV) escapes the innate immune response by translocating its ORF-9b to mitochondria and promotes proteosomal degradation of dynamin-like protein (Drp1) leading to mitochondrial fission. We also researched on Ultrasonic Energy to destroy the virus which leads to positive results but it needs more future research. The most destructive way of viruses is to enhance Reactive Oxygen Species (ROS) and free radicals in human contaminated cell which cause inflammation in a host cell. ELF-EMF converts free radicals into less active molecules and eliminates them into two pathways which have been discussed in the discussion part. Using ELF-EMF affects the second pathway that relies on the activity of the catalase and superoxide dismutase enzymes which is the most effective pathway. For the best result of treatment, is the use of lowfrequency magnetic fields (LFMF) plus EMF-ELF which penetrate into deeper tissues, cells and mitochondria. We also have gone through many researches since 1920 and found if we emit the frequency as the same frequency of COVID-19, can cause resonance in the virus and destroy it. So we measured the SARS-CoV-2 frequency by Cyclotron and calculated the frequencyof the virus is 30 KHz-500 KHz. Conclusion: COVID-19 (SARS-CoV-2) is one of the most complex viruses which have been discovered since 2020. Until today, there has been no Antiviral Drug which can be useful in the treatment of this infectious disease has been discovered till today. COVID-19 genomic sequence containing SARS-CoV, MERS-CoV and Influenza A. Therefore; there is a high possibility of continuing COVID-19 even in summer. To gain the best result in treatment, we should use low-frequency magnetic fields (LFMF) plus EMF which penetrate into deeper tissues, cells and mitochondria in order to reduce ROS and Inflammation. In order to destroy SARS-CoV-2 virus in environment and also in infected individuals, we should use ELF-EMF plus LFMF. We also have gone through many researches since 1920 and found if we emit the frequency as the same frequency of COVID-19, it can cause resonance in the virus and destroy it. So we measured the SARS-CoV-2 frequency by Cyclotron and calculated the frequency of the virus that id is 30 KHz-500 KHz. The differences in the frequencies are due to the size of the virus which is from 26 to 32 Kilobases.


2021 ◽  
Author(s):  
Mitra Gultom ◽  
Annika Kratzel ◽  
Jasmine Portmann ◽  
Hanspeter Stalder ◽  
Astrid Chanfon Baetzner ◽  
...  

In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo. In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium. 


2021 ◽  
Author(s):  
Neeltje van Doremalen ◽  
Michael Letko ◽  
Robert J. Fischer ◽  
Trenton Bushmaker ◽  
Claude Kwe Yinda ◽  
...  

AbstractMiddle East Respiratory Syndrome coronavirus (MERS-CoV) is a coronavirus that infects both humans and dromedary camels and is responsible for an ongoing outbreak of severe respiratory illness in humans in the Middle East. While some mutations found in camel-derived MERS-CoV strains have been characterized, the majority of natural variation found across MERS-CoV isolates remains unstudied. Here we report on the environmental stability, replication kinetics and pathogenicity of several diverse isolates of MERS-CoV as well as SARS-CoV-2 to serve as a basis of comparison with other stability studies. While most of the MERS-CoV isolates exhibited similar stability and pathogenicity in our experiments, the camel derived isolate, C/KSA/13, exhibited reduced surface stability while another camel isolate, C/BF/15, had reduced pathogenicity in a small animal model. These results suggest that while betacoronaviruses may have similar environmental stability profiles, individual variation can influence this phenotype, underscoring the importance of continual, global viral surveillance.


2021 ◽  
Vol 28 (1) ◽  
pp. 21
Author(s):  
Vasiliki Epameinondas Georgakopoulou ◽  
Georgios Petsinis ◽  
Konstantinos Mantzouranis ◽  
Christos Damaskos ◽  
Despoina Melemeni ◽  
...  

Human coronavirus HKU1 (HCoV-HKU1) is a RNA virus which gets in the human cells by binding to the receptor of  N-acetyl-9-O-acetylneuraminic acid. Human Coronaviruses (HCoVs), including HCoV-HKU1, are globally found. HCoV-HKU1 is responsible for upper and lower respiratory tract infections, usually with mild symptoms. In severe cases, HCoV-HKU1 can cause life-threatening respiratory illness especially in vulnerable hosts such as elderly, children and immunocompromised patients. In Greece, Respiratory Syncytial Virus (RSV) and influenza are the most common viruses causing respiratory tract infections. Traditionally, HCoVs are responsible for less than 3% of respiratory infections in Greek population. HCoVs 229E and OC43 have been shown to circulate in Greece. We report the first case of lung infection in an immunocompromised woman due to HCoV-HKU1, that has never been before detected in Greece. HCoV-HKU1 is related to severe disease even in healthy individuals and must be considered in the differential diagnosis of severe respiratory infections.


2018 ◽  
Vol 24 (10) ◽  
pp. 1964-1966 ◽  
Author(s):  
Julie Hand ◽  
Erica Billig Rose ◽  
Andrea Salinas ◽  
Xiaoyan Lu ◽  
Senthilkumar K. Sakthivel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document