scholarly journals Modelling Wetland Growing Season Rainfall Interception Losses Based on Maximum Canopy Storage Measurements

Author(s):  
Wojciech Ciężkowski ◽  
Tomasz Berezowski ◽  
Małgorzata Kleniewska ◽  
Sylwia Szporak-Wasilewska ◽  
Jarosław Chormański

This study estimates rainfall interception losses from natural wetland ecosystems based on maximum canopy storage measurements. Rainfall interception losses play an important role in water balance, which is crucial in wetlands, and has not yet been thoroughly studied in relation to this type of ecosystem. Maximum canopy storage was measured using the weight method. Based on these measurements, daily values of interception losses were estimated and then used to calculate long term interception losses based on precipitation and potential evapotranspiration data for the 1971–2015 period. Depending mainly on the number of days with precipitation, the results show that total interception losses for the growing season as well as monthly interception losses are around 13% of gross rainfall. This value is similar to the values observed for some forests. Hence, interception losses should not be disregarded in hydrologic models of wetlands, especially because data trends in meteorological conditions (mainly number of days with precipitation) show that interception losses will increase in the future if those trends stay the same.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2333 ◽  
Author(s):  
Dario Ruggiu ◽  
Francesco Viola

The prediction of long term water balance components is not a trivial issue, even when empirical Budyko’s type approaches are used, because parameter estimation is often hampered by missing or poor hydrological data. In order to overcome this issue, we provided regression equations that link climate, morphological, and vegetation parameters to Fu’s parameter. Climate is here defined as a specific seasonal pattern of potential evapotranspiration and rain: five climatic scenarios have been considered to mimic different conditions worldwide. A weather generator has been used to create stochastic time series for the related climatic scenario, which in turn has been used as an input to a conceptual hydrological model to obtain long-term water balance components with low computational effort, while preserving fundamental process descriptions. The morphology and vegetation’s role in determining water partitioning process has been epitomized in four parameters of the conceptual model. Numerical simulations explored a large set of basins in the five climates. Results show that climate superimposes partitioning rules for a given basin; morphological and vegetation watershed properties, as conceptualized by model parameters, determine the Fu’s parameter within a given climate. A sensitive analysis confirmed that vegetation has the most influencing role in determining water partitioning rules, followed by soil permeability. Finally, linear regressions relating basin characteristics to Fu’s parameter have been obtained in the five climates and tested in a basin for each case, obtaining encouraging results. The small amount of data required and the very low computational effort of the method make this approach ideal for practitioners and hydrologists involved in annual runoff assessment.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3284
Author(s):  
Bernard Šiška ◽  
Mariana Eliašová ◽  
Ján Kollár

Forest management practices and droughts affect the assemblages of carabid species, and these are the most important factors in terms of influencing short- and long-term population changes. During 2017 and 2018, the occurrences and seasonal dynamics of five carabid species (Carabus coriaceus, C. ulrichii, C. violaceus, C. nemoralis and C. scheidleri) in four oak hornbeam forest stands were evaluated using the method of pitfall trapping. The climate water balance values were cumulatively calculated here as cumulative water balance in monthly steps. The cumulative water balance was used to identify the onset and duration of drought. The number of Carabus species individuals was more than three times higher in 2018 than in 2017. Spring activity was influenced by temperature. The extremely warm April in 2018 accelerated spring population dynamics; however, low night temperatures in April in 2017 slowed the spring activity of nocturnal species. Drought negatively influenced population abundance, and the effect of a drought is likely to be expressed with a two-year delay. In our investigation, a drought in 2015 started in May and lasted eight months; however, the drought was not recorded in 2016, and 2016 was evaluated as a humid year. The meteorological conditions in the year influenced seasonal activity patterns and the timings of peaks of abundance for both spring breeding and autumn breeding Carabus species.


1959 ◽  
Vol 40 (7) ◽  
pp. 352-359 ◽  
Author(s):  
R. R. Dickson

The variation of certain climatic elements with elevation is examined for Tennessee-North Carolina portions of the Southern Appalachian region. Regression equations relating elevation to annual, January, and July mean temperatures and mean daily temperature ranges and to length of growing season are derived. Early growing-season data for 15 mountain-valley systems in western North Carolina are examined and regression lines developed relating length of growing season to elevation for valley and summit locations. These regression lines adjusted for departure of early data from long-term averages appear applicable to recent long-term data and present a useful means of refining the growing season-elevation relationship. Although a satisfactory precipitation-elevation relationship is unattainable due presumably to slope and exposure effects, an estimate is given of the mean annual snowfall-elevation relationship. Graphs are presented showing the variation of potential evapotranspiration with elevation based on computations for selected locations from 1075 ft to 6684 ft; results are believed representative of the entire area under consideration.


Author(s):  
Yinhong Kang ◽  
Lu Zhang ◽  
Warrick Dawes

Abstract In this paper, the long-term dynamics of water balance components in two different contrasting ecosystems in Australia were simulated with an ecohydrological model (WAter Vegetation Energy and Solute modelling (WAVES)) over the period 1950–2015. The selected two ecosystems are woodland savanna in Daly River and Eucalyptus forest in Tumbarumba. The WAVES model was first manually calibrated and validated against soil water content measured by cosmic-ray probe and evapotranspiration measured with eddy flux techniques. The calibrated model was then used to simulate long-term water balance components with observed climate data at two sites. Analyzing the trends and variabilities of potential evapotranspiration and precipitation is used to interpret the climate change impacts on ecosystem water balance. The results showed that the WAVES model can accurately simulate soil water content and evapotranspiration at two study sites. Over the period of 1950–2015, annual evapotranspiration at both sites showed decreasing trends (−1.988 mm year−1 in Daly and −0.381 mm year−1 in Tumbarumba), whereas annual runoff in Daly increased significantly (5.870 mm year−1) and decreased in Tumbarumba (–0.886 mm year−1). It can be concluded that the annual runoff trends are consistent with the rainfall trends, whereas trends in annual evapotranspiration are influenced by both rainfall and potential evapotranspiration. The results can provide evidence for controlling the impacting factors for different ecosystems under climate change.


2017 ◽  
Vol 12 (No. 3) ◽  
pp. 137-143
Author(s):  
J. Gregar ◽  
P. Kovář ◽  
H. Bačinová ◽  
T. Bažatová

The dump catchments water regime optimization is one of fundamental recultivation operations in areas devastated after surface coal mining. Two dump catchments (at Radovesice and Loket in the Krušné hory Mts., Czech Republic) were selected to study whether their hydrological balance allows to keep life in them on a sufficiently natural level. The WBCM-6 water balance model was implemented. Different hydrological conditions of the mentioned dump catchments located ca. 90 km apart were compared. The Radovesice catchment lies in a precipitation shadow and suffers from a much greater precipitation deficiency than the Loket one. Its long-term annual precipitation deficit makes about 100 mm. Based on the analysis of the dry year 2003 growing season, biotechnical hydrological measures, in particular cascades of small reservoirs, were proposed.


2017 ◽  
Author(s):  
Chuanhao Wu ◽  
Pat J.-F. Yeh ◽  
Kai Xu ◽  
Bill X. Hu ◽  
Guoru Huang ◽  
...  

Abstract. Understanding the effects of climate and catchment characteristics on overall water balance at different temporal scales remains a challenging task due to the large spatial heterogeneity and temporal variability. Based on a long-term (1960–2008) land surface hydrologic dataset over China, this study presented a systematic examination of the applicability of the Budyko model (BM) under various climatic conditions at long-term mean annual, annual, seasonal and monthly temporal scales. The roles of water storage change (WSC, dS/dt) in water balance modeling and the dominant climate control factors on modeling errors of BM are investigated. The results indicate that BM performs well at mean annual scale and the performance in arid climates is better than humid climates. At other smaller timescales, BM is generally accurate in arid climates, but fails to capture dominant controls on water balance in humid climates due to the effects of WSC not included in BM. The accuracy of BM can be ranked from high to low as: dry seasonal, annual, monthly, and wet seasonal timescales. When WSC is incorporated into BM by replacing precipitation (P) with effective precipitation (i.e., P minus WSC), significant improvements are found in arid climates, but to a lesser extent in humid climates. The ratio of the standard deviation of WSC to that of evapotranspiration (E), which increases from arid to humid climates, is found to be the key indicator of the BM simulation errors due to the omission of the effect of WSC. The modeling errors of BM are positively correlated with the temporal variability of WSC and hence larger in humid climates, and also found to be proportional to the ratio of potential evapotranspiration (PET) to E. More sophisticated models than the BM which explicitly incorporate the effect of WSC are required to improve water balance modeling in humid climates particularly at all the annual, seasonal, and monthly timescales.


2020 ◽  
Author(s):  
Jitka Kofroňová ◽  
Václav Šípek ◽  
Miroslav Tesař

<p>The accurate estimation of the potential evapotranspiration (PET) is one of the key processes for water balance research and for determination of actual evapotranspiration (AET). The rate of PET is primarily affected by the amount of available water, climate conditions and surface characteristics. One of the main controlling factors is the radiation balance. Both shortwave and longwave radiations significantly influence the rate of PET. Since the longwave radiation is rarely measured, it has been computed. The computing approaches include several coefficients connected to specific climate conditions. The accuracy of original set of coefficients is questionable when applied in different sites. Here we present potential systematic error in estimating PET while using modelled longwave radiation. In our study, the use of original coefficient values in calculated longwave radiation resulted in differences from 20 to 80 mm of PET in the growing season. It decreased to less than 20 mm per season after parameter calibration.</p><p>Interception describes the amount of water captured by vegetation. Captured water often evaporates back to the atmosphere, thus it doesn’t participate in surface runoff or infiltration of water to the soil. Therefore the rate of interception loss hasn’t an impact only on evaporation but also on other components of water balance. As the interception is often neglected, we decided to compare observed and modelled values of interception loss. Five different modelling approaches were selected and discussed against measured values. Resulting interception loss differences were in range from 1 to 60 mm per growing season. The differences in the rate of interception led to overall variations in predictions of discharge, groundwater height and soil moisture content modelled by HBV model.</p>


Author(s):  
O. A. Zadorozhna ◽  
T. P. Shyianova ◽  
M.Yu. Skorokhodov

Seed longevity of 76 spring barley gene pool samples (Hordeum vulgare L. subsp. distichon, convar. distichon: 56 nutans Schubl., two deficience (Steud.) Koern., two erectum Rode ex Shuebl., two medicum Koern.; convar. nudum (L.) A.Trof.: one nudum L. та subsp. vulgare: convar. vulgare: nine pallidum Ser., three rikotense Regel.; convar. coeleste (L.) A.Trof.: one coeleste (L.) A.Trof.) from 26 countries, 11 years and four places of reproduction was analyzed. Seeds with 5–8% moisture content were stored in chamber with unregulated and 4oC temperature. The possibility of seed storage under these conditions for at least 10 years without significant changes in germination has been established. The importance of meteorological conditions in the formation and ripening of seeds for their longevity is confirmed. The relationship between the decrease of barley seeds longevity and storage conditions, amount of rainfall, temperature regime during the growing season of plants is discussed.


Earth ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 340-356
Author(s):  
Forrest W. Black ◽  
Jejung Lee ◽  
Charles M. Ichoku ◽  
Luke Ellison ◽  
Charles K. Gatebe ◽  
...  

The present study investigated the effect of biomass burning on the water cycle using a case study of the Chari–Logone Catchment of the Lake Chad Basin (LCB). The Chari–Logone catchment was selected because it supplies over 90% of the water input to the lake, which is the largest basin in central Africa. Two water balance simulations, one considering burning and one without, were compared from the years 2003 to 2011. For a more comprehensive assessment of the effects of burning, albedo change, which has been shown to have a significant impact on a number of environmental factors, was used as a model input for calculating potential evapotranspiration (ET). Analysis of the burning scenario showed that burning grassland, which comprises almost 75% of the total Chari–Logone land cover, causes increased ET and runoff during the dry season (November–March). Recent studies have demonstrated that there is an increasing trend in the LCB of converting shrubland, grassland, and wetlands to cropland. This change from grassland to cropland has the potential to decrease the amount of water available to water bodies during the winter. All vegetative classes in a burning scenario showed a decrease in ET during the wet season. Although a decrease in annual precipitation in global circulation processes such as the El Niño Southern Oscillation would cause droughts and induce wildfires in the Sahel, the present study shows that a decrease in ET by the human-induced burning would cause a severe decrease in precipitation as well.


Sign in / Sign up

Export Citation Format

Share Document