scholarly journals Nonlinear Modeling and Coordinate Optimization of Semi-Active Energy Regenerative Suspension with Electro-Hydraulic Actuator

Author(s):  
Farong Kou ◽  
Jiafeng Du ◽  
Zhe Wang ◽  
Dong Li ◽  
Jianan Xu

In order to coordinate the damping performance and energy regenerative performance of energy regenerative suspension, this paper proposes a structure of vehicle semi-active energy regenerative suspension with electro-hydraulic actuator (EHA). In light of the proposed concept, a specific energy regenerative scheme is designed and the mechanical properties test is carried out. Based on the test results, the parameter identification for the system model is conducted using recursive least squares algorithm. On the basis of system principle, the nonlinear model of the semi-active energy regenerative suspension with EHA is built. Meanwhile, LQG control strategy of the system is designed. And then the influence of the main parameters of EHA on the damping performance and energy regenerative performance of suspension is analyzed. Finally, the main parameters of EHA actuator are optimized via genetic algorithm. The test results show that when sinusoidal is input at the frequency of 2Hz and the amplitude of 30mm, the spring mass acceleration RMS value of optimized EHA semi-active energy regenerative suspension is reduced by 22.23% and energy regenerative power RMS value is increased by 40.51%, which means while meeting the requirements of certain vehicle ride comfort and driving safety, energy regenerative performance is improved significantly.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhizhou Wu ◽  
Zhibo Gao ◽  
Wei Hao ◽  
Jiaqi Ma

Most existing longitudinal control strategies for connected and automated vehicles (CAVs) have unclear adaptability without scientific analysis regarding the key parameters of the control algorithm. This paper presents an optimal longitudinal control strategy for a homogeneous CAV platoon. First of all, the CAV platoon models with constant time-headway gap strategy and constant spacing gap strategy were, respectively, established based on the third-order linear vehicle dynamics model. Then, a linear-quadratic optimal controller was designed considering the perspectives of driving safety, efficiency, and ride comfort with three performance indicators including vehicle gap error, relative speed, and desired acceleration. An improved particle swarm optimization algorithm was used to optimize the weighting coefficients for the controller state and control variables. Based on the Matlab/Simulink experimental simulation, the analysis results show that the proposed strategy can significantly reduce the gap error and relative speed and improve the flexibility and initiative of the platoon control strategy compared with the unoptimized strategies. Sensitivity analysis was provided for communication lag and actuator lag in order to prove the applicability and effectiveness of this proposed strategy, which will achieve better distribution of system performance.


Author(s):  
W. Michael Axtell ◽  
David N. Rocheleau

This research is concerned with the design, modeling, and testing of a dual piezoelectric controlled electro-hydraulic actuator for use in camless engine applications. The design utilizes two piezoelectric actuated spool valves located on either side of a piston to effectively control the volume and timing of pressurized oil entering and exiting the piston chamber. A system model relating spool displacement to piston displacement was created and tested within Matlab/Simulink. To demonstrate the design, a bench top prototype was created and programmed using Matlab/Simulink, dSpace, and ControlDesk. Testing was conducted using both time domain and frequency analysis. All test results indicate a close correlation between the prototype and the final system model.


2020 ◽  
Vol 10 (5) ◽  
pp. 1852
Author(s):  
Chen Zhou ◽  
Xinhui Liu ◽  
Feixiang Xu ◽  
Wei Chen

The hydro-pneumatic suspension, as a widely used suspension for heavy vehicles, has been taken seriously by researchers for a long time because it is crucial in terms of handling stability, riding comfort, and driving safety of these vehicles. Most previous studies only discussed the control of ride comfort or vehicle handling stability of the suspension system separately. This article proposes a dynamic switch control strategy which can switch between ride comfort and handling stability controllers under different road surfaces and driving conditions. The load transfer ratio (LTR) is selected as the switch performance index, and it is calculated through a six-degrees-of-freedom (6-DOF) model. The ride comfort and handling stability controller of the hydro-pneumatic suspension are designed based on the sliding mode control theory. The objective functions of parameters optimization of the sliding mode controller (SMC) are obtained by means of analytic hierarchy process (AHP), and then the controller’s parameters are optimized by the parallel adaptive clonal selection algorithm (PACSA). The simulation results based on MATLAB/Simulink show that: (1) the PACSA performs better than a genetic algorithm in terms of the parameters optimization of the SMC; (2) the proposed switch control strategy can simultaneously improve the ride comfort and handling stability under several typical steering maneuvers and various road profiles compared with the conventional SMC-controlled suspension.


Author(s):  
Yuan-Ting Lin ◽  
Chyuan-Yow Tseng ◽  
Jao-Hwa Kuang ◽  
Yeong-Maw Hwang

The combined brake system (CBS) is a mechanism that links the front and rear brakes for scooters. For two-wheeled scooters, a CBS with appropriate braking force distribution can reduce the risk of crashing accidents due to insufficient driving proficiency. The design of the braking force distribution for a CBS is challenging to the designer because it has to fulfill many requirements such as braking performance, ride comfort, reliability, and low costs. This paper proposes a systematic method to optimize the parameters of CBS. The evaluation indexes for the design are first discussed. The steps to determine the critical parameter to meet the indexes and a method to predict braking performance are developed. Finally, driving tests are carried out to verify the effectiveness of the proposed method. Experimental results showed that the deceleration of the tested scooter equipped with the designed CBS achieves an average mean fully developed deceleration (MFDD) of 5.246 m/s2, higher than the homologation requirement. Furthermore, the proposed method’s prediction of braking performance is in good agreement with the test results, with errors <1%.


Author(s):  
Mohamed AA Abdelkareem ◽  
Mina MS Kaldas ◽  
Mohamed Kamal Ahmed Ali ◽  
Lin Xu

As the articulated trucks are mainly used for long distance transportations, the design of the suspension system became a major concern and a research hotspot not only for ride comfort and driving safety but also for energy consumption. Therefore, the objective of this study is to conduct a comprehensive parametrical–based conflict analysis between the ride comfort and road holding together with the potential power of the shock absorbers. The simulation analysis is performed using a 23 degree-of-freedom full truck semi-trailer mathematical model with random road surface model. The bounce and combined excitation modes for the truck model are applied to present the pro and contra of the simplified and realistic analysis. The bounce mode is applied for a road Class C and truck driving speed of 20 m/s, while the combined mode is performed with the same truck-speed but considering a Class C road for the left track and Class D road for the right track considering the time delay between the truck axles. The truck dynamics including the mean potential power, average dynamic tire load and bounce, and pitch and roll accelerations is comprehensively combined in the conflict analysis–based suspension and driving parameters. The obtained simulation results showed that the articulated truck suspension should be designed considering a realistic excitation condition. In contrast to the bounce mode, under the combined road input, the tractor ride quality and road handling performances are improved when a heavily damped suspension is considered. Furthermore, the otherwise dissipated energy through the damping events can reach an overall value between 2 and 4 kW.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xiao-Liang Zhang ◽  
Tian Zhang ◽  
Jiamei Nie ◽  
Long Chen

This paper presents a modified skyhook-inertance control strategy which is realized through a hydraulic device of continuously adjustable inertance between sprung mass and unsprung mass. The parasitic damping inherent in the hydraulic device as well as the inertance is taken into account in the modified control strategy. Differential equation models are built to compare the performance of the semiactive suspension employing the modified control strategy with that of the passive suspension. The results demonstrate that the semiactive suspension significantly reduces sprung mass natural frequency, attenuates the resonant peak value without the penalty of deterioration at higher frequencies, and achieves over 28% improvement on ride comfort, compared with the passive suspension in unload condition. The proposed hydraulic device, together with its control strategy, can be used to reduce the variation of sprung mass natural frequency and ride comfort between unload and full-load condition.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3146
Author(s):  
Hexu Yang ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Dongyang Shang ◽  
Xingchao Qu

With the development of robot technology, integrated joints with small volume and convenient installation have been widely used. Based on the double inertia system, an integrated joint motor servo system model considering gear angle error and friction interference is established, and a joint control strategy based on BP neural network and pole assignment method is designed to suppress the vibration of the system. Firstly, the dynamic equation of a planetary gear system is derived based on the Lagrange method, and the gear vibration of angular displacement is calculated. Secondly, the vibration displacement of the sun gear is introduced into the motor servo system in the form of the gear angle error, and the double inertia system model including angle error and friction torque is established. Then, the PI controller parameters are determined by pole assignment method, and the PI parameters are adjusted in real time based on the BP neural network, which effectively suppresses the vibration of the system. Finally, the effects of friction torque, pole damping coefficient and control strategy on the system response and the effectiveness of vibration suppression are analyzed.


Author(s):  
Michael J. Panza ◽  
Roger W. Mayne

Abstract The end point position and vibration control of a rotating flexible beam mechanism driven by a hydraulic cylinder actuator is considered. An integrated nonlinear system model comprised of beam dynamics, hydraulic actuator, control valves, and control scheme is presented. Control based on simple position feedback along with a hydraulic actuation system tuned to suppress beam vibration over a wide range of angular motion is investigated. For positioning to small to moderate mechanism angles, a linear system model with the actuator tuned for good open loop performance is developed. Actuator tuning is accomplished by varying the system hydraulic resistance according to a dimensionless parameter defining the interaction between the actuator and flexible beam. Simulation results for a closed loop system indicate that this simple tuned control provides comparable performance and requires less control effort than an untuned system with a more complex state feedback optimal controller. To compensate for geometric nonlinearities that cause instability when positioning to large mechanism angles, an active actuator tuning scheme based on continuous variation of hydraulic resistance is proposed. The active variable resistance controller is combined with simple position feedback and designed to provide a constant dimensionless actuator-flexible beam interaction parameter throughout the motion. Simulation results are presented to show the stabilizing effect of this control strategy.


2019 ◽  
Vol 39 (3) ◽  
pp. 787-802 ◽  
Author(s):  
Mingde Gong ◽  
Hao Chen

A semi-active suspension variable damping control strategy for heavy vehicles is proposed in this work. First, a nine-degree-of-freedom model of a semi-active suspension of heavy vehicles and a stochastic road input mathematical model are established. Second, using a 1/6 vehicle as an example, a semi-active suspension system with damping that can be adjusted actively is designed using proportional relief and throttle valves. The damping dynamic characteristics of the semi-active suspension system and the time to establish the damping force are studied through a simulation. Finally, a variable damping control strategy based on an actuator motion state is proposed to adjust the damping force of the semi-active suspension system actively and therefore satisfy the vibration reduction requirements of different roads. Results show that the variable damping control suspension can substantially improve vehicle ride comfort and handling stability in comparison with a passive suspension.


Sign in / Sign up

Export Citation Format

Share Document