scholarly journals Quick, Easy and Economic Mineralogical Studies of Flooded Chalk for EOR Experiments Using Raman Spectroscopy

Author(s):  
Laura Borromeo ◽  
Nina Egeland ◽  
Mona Wetrhus Minde ◽  
Udo Zimmermann ◽  
Sergio Andò ◽  
...  

Understanding the chalk-fluid interactions and the associated mineralogical and mechanical alteration at sub-micron scale are major goals in Enhanced Oil Recovery. Mechanical strength, porosity, and permeability of chalk are linked to mineral dissolution that occurs during brine injections, and affect the reservoir potential. This paper presents a novel "single grain" methodology to recognize the varieties of carbonates in rocks and loose sediments: Raman spectroscopy is a non-destructive, quick, and user-friendly technique representing a powerful tool to identify minerals down to 1 µm. An innovative working technique for oil exploration is proposed, as the mineralogy of micron-sized crystals grown in two flooded chalk samples (Liége, Belgium) was successfully investigated by Raman spectroscopy. The drilled chalk cores were flooded with MgCl2 for c. 1.5 (Long Term Test) and 3 years (Ultra Long Term Test) under North Sea reservoir conditions (Long Term Test: 130°C, 1 PV/day, 9.3 MPa effective stress; Ultra Long Term Test: 130°C, varying between 1-3 PV/day, 10.4 MPa effective stress). Raman spectroscopy was able to identify the presence of recrystallized magnesite along the core of the Long Term Test up to 4 cm from the injection surface, down to the crystal size of 1-2 µm. In the Ultra Long Term Test core the growth of MgCO3 affected nearly the entire core (7 cm). In both samples, no dolomite or high-magnesium calcite secondary growth could be detected when analysing 557 and 90 Raman spectra on the Long and Ultra Long Term Test, respectively. This study can offer Raman spectroscopy as a breakthrough tool in petroleum exploration of unconventional reservoirs, due to its quickness, spatial resolution, and non-destructive acquisition of data. These characteristics would encourage its use coupled with electron microscopes and energy dispersive systems or even electron microprobe studies.

2021 ◽  
Author(s):  
Baghir Alakbar Suleimanov ◽  
Sabina Jahangir Rzayeva ◽  
Ulviyya Tahir Akhmedova

Abstract Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-dicing agents along with significant amount of gases, mainly carbon dioxide. In early, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than non-gasified systems. The slippage effect determines the behavior of gas–liquid systems in the SR under reservoir conditions. Slippage occurs more easily when the pore channel has a smaller average radius. Therefore, in a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. The theoretical and practical foundations for the preparation of single-phase self-gasified biosystems and the implementation of the SR under reservoir conditions have been developedSR under reservoir conditions. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


Author(s):  
B. A. Suleimanov ◽  
S. J. Rzayeva ◽  
U. T. Akhmedova

Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-displacing agents along with a significant amount of gases, mainly carbon dioxide. Earlier, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than nongasified systems. In a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2889-2910 ◽  
Author(s):  
Pål Østebø Andersen ◽  
Dhruvit Satishchandra Berawala

Summary Numerical and analytical 1D solutions are presented to interpret the link between geochemical alterations and creep compaction (compaction under constant effective stress) in chalk cores. Chemically reactive flow enhancing chalk compaction is of significant importance for enhanced oil recovery (EOR), compaction, and subsidence in North Sea chalk reservoirs. The focus of this study is on Ca-, Mg-, and NaCl brines that interact with the chalk by the dissolution of calcite and the precipitation of magnesite. An explicit analytical solution is derived for the steady–state ion and dissolution–rate distributions at a given injected composition and injection rate. A mathematical description of creep compaction is proposed on the basis of applied affective stresses and rock ability to carry these stresses as a function of porosity. The reaction and compaction models are then coupled as follows: The compaction rate is assumed, which is enhanced by the dissolution rate, which can vary spatially. Furthermore, the solid volume changes by mineral dissolution and precipitation. Brine–dependent and nonuniform compaction is hence built into the model by means of the dissolution–rate distribution. The model is validated and parameterized against data from a total of 22 core samples from two chalk types (Åalborg and Liege) where reactive and inert brines were injected from ambient to Ekofisk–reservoir conditions (130°C). Experimentally measured effluent concentrations, distributions in mineralogy after flooding, and creep–compaction behavior were matched. Our model is the first to link a vast set of data on this subject and predict performance under new experimental conditions. This also represents a first step in upscaling such results from the laboratory toward the field. Our interpretations indicate that the two chalk types would respond differently chemically and by compaction to changes in the concentration and injection rate. Brines injected through Liege chalk appeared to approach stable oversaturation, while in Åalborg, the equilibrium condition was in agreement with geochemical calculations.


Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 908 ◽  
Author(s):  
Muhammad Shahzad Kamal ◽  
Syed Muhammad Shakil Hussain ◽  
Lionel Talley Fogang

Long-term thermal stability of surfactants under harsh reservoir conditions is one of the main challenges for surfactant injection. Most of the commercially available surfactants thermally degrade or precipitate when exposed to high-temperature and high-salinity conditions. In this work, we designed and synthesized three novel betaine-based polyoxyethylene zwitterionic surfactants containing different head groups (carboxybetaine, sulfobetaine, and hydroxysulfobetaine) and bearing an unsaturated tail. The impact of the surfactant head group on the long-term thermal stability, foam stability, and surfactant–polymer interactions were examined. The thermal stability of the surfactants was assessed by monitoring the structural changes when exposed at high temperature (90 °C) for three months using 1H-NMR, 13C-NMR, and FTIR analysis. All surfactants were found thermally stable regardless of the headgroup and no structural changes were evidenced. The surfactant–polymer interactions were dominant in deionized water. However, in seawater, the surfactant addition had no effect on the rheological properties. Similarly, changing the headgroup of polyoxyethylene zwitterionic surfactants had no major effect on the foamability and foam stability. The findings of the present study reveal that the betaine-based polyoxyethylene zwitterionic surfactant can be a good choice for enhanced oil recovery application and the nature of the headgroup has no major impact on the thermal, rheological, and foaming properties of the surfactant in typical harsh reservoir conditions (high salinity, high temperature).


2011 ◽  
Vol 51 (2) ◽  
pp. 727
Author(s):  
Bashirul Haq ◽  
Jishan Liu ◽  
Keyu Liu

Ions play a vital role in surfactant chemistry of EOR. The ionic effects of green surfactants are not yet well characterised, but they are biodegradable and environmental friendly, and have great potential for EOR. This study characterises some green anionic and non-ionic surfactants through the determination of the interfacial tension (IFT) of each group and the combined effect of the green surfactants with alcohols on IFT and micro emulsions; and the oil recovery factor through laboratory experiments. Alky Polyglucosides (APG) was selected from the non-ionic group, which can produce ultra low IFT. APG surfactants are produced from coconut/palm oil, corn, potato or wheat residues. Bio-surfactants produced by a microbe called Bacillus mojavensis was taken from the anionic group. This study has found that the APG surfactants are completely and quickly biodegradable and environmentally friendly. APG surfactants show low long-term aquatic toxicity for bacteria, favourable for fish and acceptable effects are on Daphnia and Algae. Our laboratory tests have confirmed that APG PG 8166 can reduce IFT from 12–3.16 dyne/cm at 40 ppm under laboratory ambient condition and from 12–4.32 dyne/cm at a reservoir condition of 50oC and 1000psi. In contrast, the bio-surfactant at 40 ppm decreased IFT from 12–4.14 dyne/cm at the same reservoir condition. Temperature appears to have little effect on the IFT of APG surfactants. There is no significant reduction in the IFT values when APG at 10 ppm combined with the pentanol at concentrations of 15–120 ppm.


2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


1999 ◽  
Vol 607 ◽  
Author(s):  
A. Saher Helmy ◽  
A.C. Bryce ◽  
C.N. Ironside ◽  
J.S. Aitchison ◽  
J.H. Marsh ◽  
...  

AbstractIn this paper we shall discuss techniques for accurate, non-destructive, optical characterisation of structures fabricated using quantum well intermixing (QWI). Spatially resolved photoluminescence and Raman spectroscopy were used to characterise the lateral bandgap profiles produced by impurity free vacancy disordering (IFVD) technology. Different features were used to examine the spatial resolution of the intermixing process. Features include 1:1 gratings as well as isolated stripes. From the measurements, the spatial selectivity of IFVD could be identified, and was found to be ∼4.5 μm, in contrast with the spatial resolution of the process of sputtering induced intermixing, which was found to be ∼2.5 μm. In addition, PL measurements on 1:1 gratings fabricated using IFVD show almost complete suppression of intermixing dielectric cap gratings with periods less than 10 microns. Finally, some insight into the limitations and merits of PL and Raman for the precision characterisation of QWI will be presented.


The Analyst ◽  
2022 ◽  
Author(s):  
Carol PY Lau ◽  
Wenao Ma ◽  
Kwan Yau Law ◽  
Maribel Lacambra ◽  
Kwok Chuen Wong ◽  
...  

Raman spectroscopy is a non-destructive analysis technique that provides detailed information about the chemical structure of the tumor. Raman spectra of 52 giant cell tumor of bone (GCTB), and 21...


Sign in / Sign up

Export Citation Format

Share Document