scholarly journals Diesel Emissions Increase Air Pollution during the Carnival Festival in Salvador, Bahia-Brazil

Author(s):  
Nelzair A. Vianna ◽  
Priscila Novaes ◽  
Nelson Gnoatto ◽  
Simone Miraglia ◽  
Paulo H. Saldiva ◽  
...  

Atmospheric pollution arising from diesel-powered engines can result in acute and chronic diseases of the respiratory and cardiovascular systems. The annual carnival festival that takes place in the city of Salvador, Bahia-Brazil, is a large-scale event that gathers approximately 2 m revelers and 170,000 workers who accompany dozens of sound-trucks, or trios elétricos, for a period of seven days. These slow-moving sound-trucks run on diesel fuel, constantly exposing those around them to exhaust fumes. The present study aimed to evaluate air quality along the approximately 10km-long carnival parade circuit and determine possible impacts on human health. We applied a three-phase risk analysis strategy from 2007–2009: 1) hazard identification, 2) risk characterization and 3) risk management. Our quantification of atmospheric particulate matter 2.5 (PM2.5) and nitrogen dioxide (NO2) concentrations revealed variable levels of PM2.5 ranging from 19 µg/m3 to 580 µg/m3, with peaks of up to 800 μg/m3 at sound-truck concentration areas. We then assessed the effects of air pollution on human health using ophthalmologic parameters obtained from 28 carnival volunteers, who often presented symptoms of eye irritation. Finally, we established strategies to communicate the study’s objectives and obtained results to the population through media outlets and open discussions with government agencies. According to our risk analysis, carnival sound-trucks represent the main source of atmospheric PM2.5 and NO2 pollution during the annual 7-day carnival festival. As a consequence of our research, the municipal government of Salvador issued an addendum to its carnival legislation mandating organizers to monitor atmospheric pollution, and, subsequently, all large-scale public events. Municipal government authorities have also promoted a shift from petroleum-based diesel fuel to biodiesel, a less-polluting fuel, for all adapted carnival sound-trucks. Our approach, which employed easily accessible and inexpensive methodology, provided substantial scientific evidence to support improvements in the regulation of air quality during large-scale public events held in the city of Salvador.Keywords: environmental

Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1329
Author(s):  
Valeria Spagnuolo ◽  
Fiore Capozzi

Despite the introduction of cleaning technologies in industry, energy production and transport, air pollution remains a major health risk; nonetheless, achieving a good air quality is a necessity for human health and ecosystems [...]


2021 ◽  
Vol 69 (1) ◽  
pp. 88-113
Author(s):  
Emina Kričković

Introduction/purpose: The research subject in this article is the status of the air quality in the city of Novi Sad and its impact on the health of the population. The relation between these two points will be presented using the DPSEEA model. The research aim of this article is to apply proper measures in order to mitigate negative effects on human health, based on scientific knowledge related to air quality influence on the health of the Novi Sad population. The basic hypothesis of this research implies that air quality affects Novi Sad's population health. Methods: The following methods were used in this article: modeling, analysis-synthesis, statistic method, classification method, combining method, geographic-ecological method, method ofgeographic-medical description, method of the medical geography forecast as well as cartographic method. Results: Based on the DPSEEA model and the example of the air pollution in the city of Novi Sad, the following was identified: air pollution driving forces, pressures, state of the air quality, population exposure to air pollution, effects on human health as well as measures and actions that should be conducted. The mentioned model was also used to present the relationship between these segments. Conclusion: The given model deals with a wide spectrum ofpotential forces (harmful effects) and necessary community actions, bringing together professionals, people in the field and those from laboratories as well as managers in the area of environment and public health management, in order to tackle emerging problems in a comprehensive manner.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


2017 ◽  
Vol 200 ◽  
pp. 693-703 ◽  
Author(s):  
Jos Lelieveld

In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt “clean air” as a sustainable development goal.


2017 ◽  
Vol 17 (11) ◽  
pp. 7261-7276 ◽  
Author(s):  
Tobias Wolf-Grosse ◽  
Igor Esau ◽  
Joachim Reuder

Abstract. Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.


2021 ◽  
Vol 26 (2) ◽  
pp. 65-74
Author(s):  
V. N. Lozhkin ◽  
◽  
O. V. Lozhkina ◽  

Introduction. St. Petersburg is the cultural and sea capital of Russia. The city is characterized by environmental problems typical for the largest cities in the world. It has a technical system for instrumental online monitoring and computational forecasting of air quality. Methods. The system maintains the information process by means of computational monitoring of its current and future state. Results. The paper describes methodological approaches to the generation of instrumental information about the structure and intensity of traffic flows in the urban road network and its digital transformation into GIS maps of air pollution in terms of pollutants standard limit values excess. Conclusion. The original information technology for air quality control was introduced at the regional level in the form of an official methodology and is used in environmental management activities.


Author(s):  
Mohd Saleem ◽  
Mohd Adnan Kausar ◽  
Fahmida Khatoon ◽  
Sadaf Anwar ◽  
Syed Monowar Alam Shahid ◽  
...  

In many aspects of life quality, bio-contaminants and indoor air quality have had catastrophic consequences, including a negative impact on human health with an increased prevalence of allergic respiratory reactions, asthma, and infectious diseases. We aimed to evaluate the quality of indoor air environment and find out the association between human health and indoor air pollution and also to assess the physical health status of a group of Saudi and non-Saudi populations during this pandemic. Also, we aimed to assess the most common health condition or symptoms associated with ventilation. A questionnaire was distributed online to test indoor air quality, ventilation status, common signs and symptoms of any allergy or mental status and their relationship to certain variables. A total of 362 respondents were included. Before living in the current home, flu or Influenza and chapped lips were more prevalent than allergies and chapped lips signs while living in the current home. (12.2% , 10.8% vs. 18.5% , 13.55% before and after respectively) Multiple colds were the second most common symptom (10.2%). Hoarse voice and headaches were the least common symptoms experienced; each constituted 4.4%. During the COVID-19 Pandemic, most respondents wore a facemask, approximately 76.5%; and almost one-third of respondents had bright natural light inside the current home (43.1%). The presence of natural light within the current home was significantly associated with symptoms experienced during living in the current house (p<0.05). Natural sunlight exposure could decrease allergic symptoms and minor health problems associated with poor ventilation and air quality indoors. In current living homes, the majority of respondents never used air purifiers (72.9 percent). In order to get attention from people to enhance the quality and ventilation mechanism of indoor air, special care and awareness of the effects of the use of air purifiers on human health is needed.


2021 ◽  
Author(s):  
Ivo Suter ◽  
Lukas Emmenegger ◽  
Dominik Brunner

&lt;p&gt;Reducing air pollution, which is the world's largest single environmental health risk, demands better-informed air quality policies. Consequently, multi-scale air quality models are being developed with the goal to resolve cities. One of the major challenges in such model systems is to accurately represent all large- and regional-scale processes that may critically determine the background concentration levels over a given city. This is particularly true for longer-lived species such as aerosols, for which background levels often dominate the concentration levels, even within the city. Furthermore, the heterogeneous local emissions, and complex dispersion in the city have to be considered carefully.&lt;/p&gt;&lt;p&gt;In this study, the impact of processes across a wide range of scales on background concentrations over Switzerland and the city of Zurich was modelled by performing one year of nested European and Swiss national COSMO-ART simulations to obtain adequate boundary conditions for gas-phase chemical, aerosol and meteorological conditions for city-resolving simulations. The regional climate chemistry model COSMO-ART (Vogel et al. 2009) was used in a 1-way coupled mode. The outer, European, domain, which was driven by chemical boundary conditions from the global MOZART model, had a 6.6 km horizontal resolution and the inner, Swiss, domain one of 2.2 km. For the city scale, a catalogue of more than 1000 mesoscale flow patterns with 100 m resolution was created with the model GRAMM, based on a discrete set of atmospheric stabilities, wind speeds and directions, accounting for the influence of land-use and topography. Finally, the flow around buildings was solved with the CFD model GRAL forced at the boundaries by GRAMM. Subsequently, Lagrangian dispersion simulations for a set of air pollutants and emission sectors (traffic, industry, ...) based on extremely detailed building and emission data was performed in GRAL. The result of this nested procedure is a library of 3-dimensional air pollution maps representative of hourly situations in Zurich (Berchet et al. 2017). From these pre-computed situations, time-series and concentration maps can be obtained by selecting situations according to observed or modelled meteorological conditions.&lt;/p&gt;&lt;p&gt;The results were compared to measurements from air quality monitoring network stations. Modelled concentrations of NO&lt;sub&gt;x&lt;/sub&gt; and PM compared well to measurements across multiple locations, provided background conditions were considered carefully. The nested multi-scale modelling system COSMO-ART/GRAMM/GRAL can adequately reproduce local air quality and help understanding the relative contributions of local versus distant emissions, as well as fill the space between precise point measurements from monitoring sites. This information is useful for research, policy-making, and epidemiological studies particularly under the assumption that exceedingly high concentrations become more and more localised phenomenon in the future.&lt;/p&gt;


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
G. Lancia ◽  
F. Rinaldi ◽  
P. Serafini

We describe mathematical models and practical algorithms for a problem concerned with monitoring the air pollution in a large city. We have worked on this problem within a project for assessing the air quality in the city of Rome by placing a certain number of sensors on some of the city buses. We cast the problem as a facility location model. By reducing the large number of data variables and constraints, we were able to solve to optimality the resulting MILP model within minutes. Furthermore, we designed a genetic algorithm whose solutions were on average very close to the optimal ones. In our computational experiments we studied the placement of sensors on 187 candidate bus routes. We considered the coverage provided by 10 up to 60 sensors.


Author(s):  
Sirajuddin M Horaginamani ◽  
M Ravichandran

Though water and land pollution is very dangerous, air pollution has its own peculiarities, due to its transboundary dispersion of pollutants over the entire world. In any well planned urban set up, industrial pollution takes a back seat and vehicular emissions take precedence as the major cause of urban air pollution. Air pollution is one of the serious problems faced by the people globally, especially in urban areas of developing countries like India. All these in turn lead to an increase in the air pollution levels and have adverse effects on the health of people and plants. Western countries have conducted several studies in this area, but there are only a few studies in developing countries like India. A study on ambient air quality in Tiruchirappalli urban area and its possible effects selected plants and human health has been undertaken, which may be helpful to bring out possible control measures. Keywords: ambient air quality; respiratory disorders; APTI; human health DOI: 10.3126/kuset.v6i2.4007Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.13-19


Sign in / Sign up

Export Citation Format

Share Document