scholarly journals Potentiometric Biosensing Applications of Graphene Electrode with Stabilized Polymer Lipid Membranes

Author(s):  
Georgia-Pareaskevi Nikoleli ◽  
Dimitrios P. Nikolelis ◽  
Christina G. Siontorou ◽  
Marianna-Thalia Nikolelis ◽  
Stephanos Karapetis

This review provides informations and details for the fabrication of biosensors that are composed from lipid membranes and have been utilized and applied to rapidly detect food toxic compounds, environmental pollutants and analytes of clinical interest. Biosensors based on polymeric lipid membranes have been used to rapidly detect a wide range of these analytes and offer several advantages such as fast response, high sensitivity and selectivity, can be portable for in the field applications, and small size. A description of the construction of these devices and their applications for the rapid detection of food toxic substance, environmental pollutants and analytes of clinical interest is provided in this review.

Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 719
Author(s):  
Shahrooz Rahmati ◽  
William Doherty ◽  
Arman Amani Babadi ◽  
Muhamad Syamim Akmal Che Mansor ◽  
Nurhidayatullaili Muhd Julkapli ◽  
...  

The environmental crisis, due to the rapid growth of the world population and globalisation, is a serious concern of this century. Nanoscience and nanotechnology play an important role in addressing a wide range of environmental issues with innovative and successful solutions. Identification and control of emerging chemical contaminants have received substantial interest in recent years. As a result, there is a need for reliable and rapid analytical tools capable of performing sample analysis with high sensitivity, broad selectivity, desired stability, and minimal sample handling for the detection, degradation, and removal of hazardous contaminants. In this review, various gold–carbon nanocomposites-based sensors/biosensors that have been developed thus far are explored. The electrochemical platforms, synthesis, diverse applications, and effective monitoring of environmental pollutants are investigated comparatively.


2021 ◽  
Vol 21 (8) ◽  
pp. 4400-4405
Author(s):  
Junyeop Lee ◽  
Nam Gon Do ◽  
Dong Hyuk Jeong ◽  
Sae-Wan Kim ◽  
Maeum Han ◽  
...  

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.


2020 ◽  
Vol 6 (23) ◽  
pp. eaba5785 ◽  
Author(s):  
Jeonghee Yeom ◽  
Ayoung Choe ◽  
Seongdong Lim ◽  
Youngsu Lee ◽  
Sangyun Na ◽  
...  

Artificial tongues have been receiving increasing attention for the perception of five basic tastes. However, it is still challenging to fully mimic human tongue–like performance for tastes such as astringency. Mimicking the mechanism of astringency perception on the human tongue, we use a saliva-like chemiresistive ionic hydrogel anchored to a flexible substrate as a soft artificial tongue. When exposed to astringent compounds, hydrophobic aggregates form inside the microporous network and transform it into a micro/nanoporous structure with enhanced ionic conductivity. This unique human tongue–like performance enables tannic acid to be detected over a wide range (0.0005 to 1 wt %) with high sensitivity (0.292 wt %−1) and fast response time (~10 s). As a proof of concept, our sensor can detect the degree of astringency in beverages and fruits using a simple wipe-and-detection method, making a powerful platform for future applications involving humanoid robots and taste monitoring devices.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6588
Author(s):  
Jun Ho Lee ◽  
Jae Sang Heo ◽  
Keon Woo Lee ◽  
Jae Cheol Shin ◽  
Jeong-Wan Jo ◽  
...  

For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa−1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa−1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures.


2006 ◽  
Vol 45 ◽  
pp. 1828-1833
Author(s):  
Fabio A. Deorsola ◽  
P. Mossino ◽  
Ignazio Amato ◽  
Bruno DeBenedetti ◽  
A. Bonavita ◽  
...  

Nanostructured semiconductor metal oxides have played a central role in the gas sensing research field, because of their high sensitivity, selectivity and low response time. Among all the processes, developed for the synthesis of nanostructured metal oxides, gel combustion seems to be the most promising route due to low-cost precursors and simplicity of the process. It combines chemical gelation and combustion, involving the formation of a gel from an acqueous solution and an exothermic redox reaction, yielding to very porous and softly agglomerated nanopowders. In this work, nanostructured tin oxide, SnO2, and titanium oxide, TiO2, have been synthesized through gel combustion. Powders showed nanometric particle size and high specific surface area. The so-obtained TiO2 and SnO2 nanopowders have been used as sensitive element of resistive λ sensor and ethanol sensor respectively, realized depositing films of nanopowders dispersed in water onto alumina substrates provided with Pt contacts and heater. TiO2-based sensors showed at high temperature good response, fast response time, linearity in a wide range of O2 concentration and long-term stability. SnO2-based sensors have shown high sensitivity to low concentrations of ethanol at moderate temperature.


Talanta ◽  
2018 ◽  
Vol 183 ◽  
pp. 164-171 ◽  
Author(s):  
Xiaoke Jie ◽  
Ming Liu ◽  
Aidong Peng ◽  
Jijun Huang ◽  
Yuanlin Zhang ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Zhengyou Zhu ◽  
Xiaxia Xing ◽  
Dongliang Feng ◽  
Zhenxu Li ◽  
Yingying Tian ◽  
...  

Hydrogen sensing simultaneously endowed with fast response, high sensitivity and selectivity are highly desired in detecting hydrogen leakages such as in those hydrogen-driven vehicles and space rockets. Here, hydrogen sensing...


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao-Guang Gao ◽  
Ling-Xiao Cheng ◽  
Wen-Shuai Jiang ◽  
Xiao-Kuan Li ◽  
Fei Xing

Being the first successfully prepared two-dimensional material, graphene has attracted extensive attention from researchers due to its excellent properties and extremely wide range of applications. In particular, graphene and its derivatives have displayed several ideal properties, including broadband light absorption, ability to quench fluorescence, excellent biocompatibility, and strong polarization-dependent effects, thus emerging as one of the most popular platforms for optical sensors. Graphene and its derivatives-based optical sensors have numerous advantages, such as high sensitivity, low-cost, fast response time, and small dimensions. In this review, recent developments in graphene and its derivatives-based optical sensors are summarized, covering aspects related to fluorescence, graphene-based substrates for surface-enhanced Raman scattering (SERS), optical fiber biological sensors, and other kinds of graphene-based optical sensors. Various sensing applications, such as single-cell detection, cancer diagnosis, protein, and DNA sensing, are introduced and discussed systematically. Finally, a summary and roadmap of current and future trends are presented in order to provide a prospect for the development of graphene and its derivatives-based optical sensors.


2013 ◽  
Vol 864-867 ◽  
pp. 879-882
Author(s):  
Yu Wang ◽  
Zhao Zhang ◽  
Jin Wei Zhu ◽  
Yan Yan ◽  
Xue Jun Kang

In order to detect the environmental pollutants in water sample with high sensitivity, an automatic method based on a combined preconcentration setup and flow injection system was developed. A novel packed fiber solid phase extraction (PFSPE) cartridge packed with electrospun nanofiber was first designed to adsorb environmental pollutants from water media in an online manner. Rhodamine B (RB) was selected as a model pollutant. Under the optimized conditions, a good linearity of wide range between 25-1000 ng mL-1 was achieved. The LOD was 7.5 ng mL-1. The method was applied to analysis RB in water samples with satisfactory results.


Chemosensors ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 46
Author(s):  
Eman El-Naby

1-(3-chlorophenyl)piperazine (mCPP) is a wide spread new psychoactive substance produces stimulant and hallucinogenic effects similar to those sought from ecstasy. Hence, in the recent years, mCPP has been introduced by the organized crime through the darknet as a part of the illicit ecstasy market with a variable complex profile of pharmacologically active substances that pose problematic risk patterns among people who take these seized products. Accordingly, the design of selective sensors for the determination of mCPP is a very important demand. In this respect, a supramolecular architecture; [Na(15-crown-5)][BPh4] from the assembly of 15-crown-5 and sodium tetraphenylboron has been utilized as an ionophore, for the first time in the selective recognition of mCPP in conjunction with potassium tetrakis(p-chlorophenyl)borate and dioctylphthalate through polymeric membrane ion sensors. The ionophore exhibited a strong binding affinity that resulted in a high sensitivity with a slope closed to the ideal Nernstian value; 58.9 ± 0.43 mV/decade, a larger dynamic range from 10−6 to 10−2 M, a lower limit of detection down to 5.0 × 10−7 M and a fast response time of 5 s. Very important also is it was afforded excellent selectivity towards mCPP over psychoactive substances of major concern, providing a potentially useful system for the determination of mCPP in the illicit market. On comparison with the natural β-cyclodextrin as an ionophore, it exhibited more sensitivity and selectivity estimated to be the superior.


Sign in / Sign up

Export Citation Format

Share Document