scholarly journals Exploiting Read/Write Asymmetry to Achieve Opportunistic SRAM Voltage Switching in Dual-Supply Near-Threshold Processors

Author(s):  
Yunfei Gu ◽  
Dengxue Yan ◽  
Vaibhav Verma ◽  
Pai Wang ◽  
Mircea R. Stan ◽  
...  

Energy-efficient microprocessors are essential for a wide range of applications. While near-threshold computing is a promising technique to improve energy efficiency, optimal supply demands from logic core and on-chip memory are conflicting. In this paper, we perform static reliability analysis of 6T SRAM and discover the variance among different sizing configuration and asymmetric minimum voltage requirements between read and write operations. We leverage this asymmetric property in near-threshold processors equipped with voltage boosting capability by proposing an opportunistic dual-supply switching scheme with a write aggregation buffer. Our results show that proposed technique improves energy efficiency by more than 21.45% with approximate 10.19% performance speed-up.

2018 ◽  
Vol 8 (3) ◽  
pp. 28
Author(s):  
Yunfei Gu ◽  
Dengxue Yan ◽  
Vaibhav Verma ◽  
Pai Wang ◽  
Mircea Stan ◽  
...  

Energy-efficient microprocessors are essential for a wide range of applications. While near-threshold computing is a promising technique to improve energy efficiency, optimal supply demands from logic core and on-chip memory are conflicting. In this paper, we perform static reliability analysis of 6T SRAM and discover the variance among different sizing configuration and asymmetric minimum voltage requirements between read and write operations. We leverage this asymmetric property i n near-threshold processors equipped with voltage boosting capability by proposing an opportunistic dual-supply switching scheme with a write aggregation buffer. Our results show that proposed technique improves energy efficiency by more than 21.45% with approximate 10.19% performance speed-up.


Author(s):  
Yunfei Gu ◽  
Dengxue Yan ◽  
Vaibhav Verma ◽  
Pai Wang ◽  
Mircea Stan ◽  
...  

Energy-efficient microprocessors are essential for a wide range of applications. While near-threshold computing is a promising technique to improve energy efficiency, optimal supply demands from logic core and on-chip memory are conflicting. In this paper, we perform static reliability analysis of 6T SRAM and discover the variance among different sizing configuration and asymmetric minimum voltage requirements between read and write operations. We leverage this asymmetric property in near-threshold processors equipped with voltage boosting capability by proposing an opportunistic dual-supply switching scheme with a write aggregation buffer. Our results show that proposed technique improves energy efficiency by more than 21.45% with approximate 10.19% performance speed-up.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 537
Author(s):  
Mohammad Baniata ◽  
Haftu Tasew Reda ◽  
Naveen Chilamkurti ◽  
Alsharif Abuadbba

One of the major concerns in wireless sensor networks (WSNs) is most of the sensor nodes are powered through limited lifetime of energy-constrained batteries, which majorly affects the performance, quality, and lifetime of the network. Therefore, diverse clustering methods are proposed to improve energy efficiency of the WSNs. In the meantime, fifth-generation (5G) communications require that several Internet of Things (IoT) applications need to adopt the use of multiple-input multiple-output (MIMO) antenna systems to provide an improved capacity over multi-path channel environment. In this paper, we study a clustering technique for MIMO-based IoT communication systems to achieve energy efficiency. In particular, a novel MIMO-based energy-efficient unequal hybrid clustering (MIMO-HC) protocol is proposed for applications on the IoT in the 5G environment and beyond. Experimental analysis is conducted to assess the effectiveness of the suggested MIMO-HC protocol and compared with existing state-of-the-art research. The proposed MIMO-HC scheme achieves less energy consumption and better network lifetime compared to existing techniques. Specifically, the proposed MIMO-HC improves the network lifetime by approximately 3× as long as the first node and the final node dies as compared with the existing protocol. Moreover, the energy that cluster heads consume on the proposed MIMO-HC is 40% less than that expended in the existing protocol.


2021 ◽  
Vol 9 (6) ◽  
pp. 13-25
Author(s):  
Michail Angelopoulos ◽  
Yannis Pollalis

This research focuses on providing insights for a solution for collecting, storing, analyzing and visualizing data from customer energy consumption patterns. The data analysis part of our research provides the models for knowledge discovery that can be used to improve energy efficiency at both producer and consumer ends. Τhe study sets a new analytical framework for assessing the role of behavioral knowledge in energy efficiency using a wide range of Case Studies, Experiments, Research, Information and Communication Technologies (ICT) in combination with the most modern econometric methods and large analytical data taking into account the characteristics of the study participants (household energy customers).


Author(s):  
M.M. Zhileykin

Mobile robotic systems are employed to perform a wide range of transportation and technological tasks. One of the main requirements to these systems is their high capability to traverse complex terrains and surfaces. Future applications of wheel-walking mobile systems largely define the problem of their energy efficiency. This paper presents a mobile robotic system with wheel-walking propulsion that can increase the system’s traverse capability on support surfaces with low bearing properties due to a new chassis layout and algorithms controlling the walking module. A cyclogram of the energy efficient step of the mobile robotic system with wheel-walking propulsion is developed, which provides high indicators of traverse capability on support bases with low bearing capacity.


Solar Energy ◽  
2002 ◽  
Author(s):  
Andy Walker ◽  
Norm Weaver ◽  
Gregory Kiss ◽  
Doug Balcomb ◽  
Melinda Becker-Humphry

A new version of the ENERGY-10 computer program simulates the performance of photovoltaic systems, in addition to a wide range of opportunities to improve energy efficiency in buildings. This paper describes two test cases in which the beta release of ENERGY-10 version 1.4 was used to evaluate energy efficiency and building-integrated photovoltaics (BIPV) for two Federal building projects: a 16,000-ft2 (1,487 m2) office and laboratory building at the Smithsonian Astrophysical Laboratory in Hilo, Hawaii, and housing for visiting scientists [three 1400-ft2 (130 m2) and three 1564-ft2 (145 m2) houses] at the Smithsonian Environmental Research Center in Edgewater, Maryland. The paper describes the capabilities of the software, the method in which ENERGY-10 was used to assist in the design, and a synopsis of the results. The results indicate that ENERGY-10 is an effective tool for evaluating BIPV options very early in the building design process. By simulating both the building electrical load and simultaneous PV performance for each hour of the year, the ENERGY-10 program facilitates a highly accurate, integrated analysis.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


The deployment of Internet-of-Things (IoT) enables an even richer variety of sensors at a much larger scale. Where offloading both the evaluation and the polling of IoT sensor data to the cloud would improve energy efficiency and data transfer costs for the mobile. We build an energy efficient framework for Combining Sensors and IoT to help developers easily builds applications that evaluate sensor data on the server via data transmission. We built a advanced framework to compress data i.e Novel Data Compression Approach that helps the user to know the regular movement of particular person with the sensor within the limited premises and the location surveillance of the host will be saving the location data with some security measures We also implement our protocol and compare it with the certificate-based scheme to illustrate its feasibility.


Sign in / Sign up

Export Citation Format

Share Document