scholarly journals The Variation on Tempo-Spatial Pattern of Main Pastoral Grasslands in China

Author(s):  
Wei Zhou ◽  
Lu Huang ◽  
Han Yang ◽  
Xuemin Nie

In order to explore the grassland ecosystem productivity and landscape ecological patterns of main pastoral grasslands in China, it provides a theoretical basis for the efficient implementation of ecological engineering and rational management of grassland resources in the region. This study analyzed the changes in grassland area, landscape index (LSI), and net primary productivity (NPP) in seven major pastoral areas in China in 1985, 1995, 2005, and 2015. Results showed that (1) the sizes of the grassland study area in 1985, 1995, 2005, and 2015 were 248.34, 243.93, 245.80, and 244.660 km2 respectively. (2) The dominance of grassland in the landscape pattern increased from 2005 to 2015 as compared with that in 1985–1995 and 1995–2005. The degrees of spatial heterogeneity were reduced. (3) The grassland NPP showed spatial and temporal differences. The average NPP of grassland increased by 21.30%, 16.47%, and 36.17% during 1985–1995, 2005–2015, and 1985–2015, respectively. From 1995 to 2005, the average NPP decreased by 5.05 gC/m2, which is equivalent to -3.61% of the average NPP in 1995. The total amount of grassland NPP in the study area was the greatest in 2015, showing increments of 36.37% and 16.61% compared with those in 1985 and 2005, respectively.

Author(s):  
Wei Zhou ◽  
Lu Huang ◽  
Han Yang ◽  
Xuemin Nie

In order to explore the grassland ecosystem productivity and landscape ecological patterns of main pastoral grasslands in China, it provides a theoretical basis for the efficient implementation of ecological engineering and rational management of grassland resources in the region. This study analyzed the changes in grassland area, landscape index (LSI), and net primary productivity (NPP) in seven major pastoral areas in China in 1985, 1995, 2005, and 2015. Results showed that (1) the sizes of the grassland study area in 1985, 1995, 2005, and 2015 were 248.34, 243.93, 245.80, and 244.660 km2 respectively. (2) The dominance of grassland in the landscape pattern increased from 2005 to 2015 as compared with that in 1985–1995 and 1995–2005. The degrees of spatial heterogeneity were reduced. (3) The grassland NPP showed spatial and temporal differences. The average NPP of grassland increased by 21.30%, 16.47%, and 36.17% during 1985–1995, 2005–2015, and 1985–2015, respectively. From 1995 to 2005, the average NPP decreased by 5.05 gC/m2, which is equivalent to -3.61% of the average NPP in 1995. The total amount of grassland NPP in the study area was the greatest in 2015, showing increments of 36.37% and 16.61% compared with those in 1985 and 2005, respectively.


2021 ◽  
Author(s):  
Kristiina Visakorpi ◽  
Sofia Gripenberg ◽  
Yadvinder Malhi ◽  
Terhi Riutta

AbstractOur current understanding of the relationship between insect herbivory and ecosystem productivity is limited. Previous studies have typically quantified only leaf area loss, or have been conducted during outbreak years. These set-ups often ignore the physiological changes taking place in the remaining plant tissue after insect attack, or may not represent typical, non-outbreak herbivore densities. Here, we estimate the amount of carbon lost to insect herbivory in a temperate deciduous woodland both through leaf area loss and, notably, through changes in leaf gas exchange in non-consumed leaves under non-outbreak densities of insects. We calculate how net primary productivity changes with decreasing and increasing levels of herbivory, and estimate what proportion of the carbon involved in the leaf area loss is transferred further in the food web. We estimate that the net primary productivity of an oak stand under ambient levels of herbivory is 54 - 69% lower than that of a completely intact stand. The effect of herbivory quantified only as leaf area loss (0.1 Mg C ha−1 yr−1) is considerably smaller than when the effects of herbivory on leaf physiology are included (8.5 Mg C ha−1 yr−1). We propose that the effect of herbivory on primary productivity is non-linear and mainly determined by changes in leaf gas exchange. We call for replicated studies in other systems to validate the relationship between insect herbivory and ecosystem productivity described here.


2005 ◽  
Vol 2 (4) ◽  
pp. 1243-1282 ◽  
Author(s):  
G. Krinner ◽  
P. Ciais ◽  
N. Viovy ◽  
P. Friedlingstein

Abstract. Nitrogen limitation of ecosystem productivity is ubiquitous, and it is thought that it has and will have a significant impact on net ecosystem productivity, and thus carbon sequestration, in the context of ongoing future increase of atmospheric CO2 concentration and climate change. However, many vegetation models do not represent nitrogen limitation, and might thus overestimate future terrestrial C sequestration. This work presents a simple parameterization of nitrogen limitation that can be easily implemented in vegetation models which do not yet include a complete nitrogen cycle. This parameterization is based on the ratio between heterotrophic respiration (considered a "proxy" of net mineralization rate) and net primary productivity of the ecosystem (considered a "proxy" of nitrogen demand). It is implemented in a global vegetation model and tested against site experiments of CO2 fertilization and soil warming. Furthermore, global simulations of past and future CO2 fertilization are carried out and compared to other model results and available estimates of global C sequestration. It is shown that when N limitation is taken into account using the simple parameterization presented here, the model reproduces fairly realistically the carbon dynamics observed under CO2 fertilization and soil warming.


2020 ◽  
Vol 12 (7) ◽  
pp. 1223 ◽  
Author(s):  
Zhoutao Zheng ◽  
Wenquan Zhu ◽  
Yangjian Zhang

As a key biotic factor, phenology exerts fundamental influences on ecosystem carbon sequestration. However, whether spring phenology affects the subsequent seasonal ecosystem productivity and the underlying resource limitation mechanism remains unclear for the alpine grasslands of the Tibetan Plateau (TP). In this study, we investigated the direct and lagged seasonal responses of net primary productivity (NPP) to the beginning of growing season (BGS) along a precipitation gradient by integrating field observations, remote sensing monitoring and ecosystem model simulations. The results revealed distinct response patterns of seasonal NPP to BGS. Specifically, the BGS showed a significant and negative correlation with spring NPP (R = −0.73, p < 0.01), as evidenced by the direct boosting effects of earlier BGS on spring NPP. Moreover, spring NPP was more responsive to BGS in areas with more annual precipitation. The boosting effects of earlier BGS on NPP tended to weaken in summer compared with that in spring. Sequentially, BGS exhibited stronger positive correlation with autumn NPP in areas with less annual precipitation, which suggested the enhanced lagged suppressing effects of earlier spring phenology on ecosystem carbon assimilation during the later growing season under aggravated water stress. Overall, the strengthened NPP in spring was offset by its decrement in autumn, resulting in no obvious relationship between BGS and annual NPP (R = −0.34, p > 0.05) for the entire grasslands on the TP. The findings of this study imply that the lagged effects of phenology on the ecosystem productivity during the subsequent seasons should not be neglected in the future studies.


Sign in / Sign up

Export Citation Format

Share Document