scholarly journals The Origin of Prebiotic Information System in the Peptide/RNA World: A Simulation Model of the Evolution of Translation and the Genetic Code

Life ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 25 ◽  
Author(s):  
Sankar Chatterjee ◽  
Surya Yadav

Information is the currency of life, but the origin of prebiotic information remains a mystery. We propose transitional pathways from the cosmic building blocks of life to the complex prebiotic organic chemistry that led to the origin of information systems. The prebiotic information system, specifically the genetic code, is segregated, linear, and digital, and it appeared before the emergence of DNA. In the peptide/RNA world, lipid membranes randomly encapsulated amino acids, RNA, and peptide molecules, which are drawn from the prebiotic soup, to initiate a molecular symbiosis inside the protocells. This endosymbiosis led to the hierarchical emergence of several requisite components of the translation machine: transfer RNAs (tRNAs), aminoacyl-tRNA synthetase (aaRS), messenger RNAs (mRNAs), ribosomes, and various enzymes. When assembled in the right order, the translation machine created proteins, a process that transferred information from mRNAs to assemble amino acids into polypeptide chains. This was the beginning of the prebiotic <i>information</i> age. The origin of the genetic code is enigmatic; herein, we propose an evolutionary explanation: the demand for a wide range of protein enzymes over peptides in the prebiotic reactions was the main selective pressure for the origin of information-directed protein synthesis. The molecular basis of the genetic code manifests itself in the interaction of aaRS and their cognate tRNAs. In the beginning, aminoacylated ribozymes used amino acids as a cofactor with the help of bridge peptides as a process for selection between amino acids and their cognate codons/anticodons. This process selects amino acids and RNA species for the next steps. The ribozymes would give rise to pre-tRNA and the bridge peptides to pre-aaRS. Later, variants would appear and evolution would produce different but specific aaRS-tRNA-amino acid combinations. Pre-tRNA designed and built pre-mRNA for the storage of information regarding its cognate amino acid. Each pre-mRNA strand became the storage device for the genetic information that encoded the amino acid sequences in triplet nucleotides. As information appeared in the digital languages of the codon within pre-mRNA and mRNA, and the genetic code for protein synthesis evolved, the prebiotic chemistry then became more organized and directional with the emergence of the translation and genetic code. The genetic code developed in three stages that are coincident with the refinement of the translation machines: the GNC code that was developed by the pre-tRNA/pre-aaRS /pre-mRNA machine, SNS code by the tRNA/aaRS/mRNA machine, and finally the universal genetic code by the tRNA/aaRS/mRNA/ribosome machine. We suggest the coevolution of translation machines and the genetic code. The emergence of the translation machines was the beginning of the Darwinian evolution, an interplay between information and its supporting structure. Our hypothesis provides the logical and incremental steps for the origin of the programmed protein synthesis. In order to better understand the prebiotic information system, we converted letter codons into numerical codons in the Universal Genetic Code Table. We have developed a software, called CATI (Codon-Amino Acid-Translator-Imitator), to translate randomly chosen numerical codons into corresponding amino acids and vice versa. This conversion has granted us insight into how the genetic code might have evolved in the peptide/RNA world. There is great potential in the application of numerical codons to bioinformatics, such as barcoding, DNA mining, or DNA fingerprinting. We constructed the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. While using AnyLogic software, we were able to simulate and visualize the entire evolution of the translation machines, amino acids, and the genetic code.

Author(s):  
Sankar Chatterjee ◽  
Surya Yadav

Information is the currency of life, but the origin of prebiotic information remains a mystery. We propose transitional pathways from the cosmic building blocks of life to the complex prebiotic organic chemistry that led to the origin of information systems. The prebiotic information system, specifically the genetic code, is segregated, linear, and digital and probably appeared during biogenesis four billion years ago. In the peptide/RNA world, lipid membranes randomly encapsulated amino acids, RNA, and protein molecules, drawn from the prebiotic soup, to initiate a molecular symbiosis inside the protocells. This endosymbiosis led to the hierarchical emergence of several requisite components of the translation machine: tRNAs, aaRS, mRNAs, and ribosomes. When assembled in the right order, the translation machine created biosynthetic polypeptides, a process that transferred information from mRNAs to proteins. This was the beginning of the prebiotic information age. The molecular attraction between tRNA and amino acids led to different stages of the translation machines and the genetic code. tRNA is an ancient molecule that designed and built mRNA for storing the information of its cognate amino acid. Each mRNA strand became the storage device for the genetic information that encoded the amino acid sequences in triplet nucleotides. As information appeared in the digital languages of the codon within mRNA, and the genetic code for protein synthesis evolved, the prebiotic chemistry then became more organized and directional. The origin of the genetic code is enigmatic; herein we propose an evolutionary explanation: the demand for a wide range of specific enzymes in the peptide/RNA world was the main selective pressure for the origin of information-directed protein synthesis. We review three main concepts on the origin and evolution of the genetic code: the stereochemical theory, the coevolution theory, and the adaptive theory. These three theories are compatible with our coevolution model of the translation machines and the genetic code. We suggest biosynthetic pathways as the origin of the specific translation machines which provided the framework for the origin of the genetic code. During translation, the genetic code developed in three stages coincident with the refinement of the translation machines: GNC code developed by the pre-tRNA/pre-aaRS /pre-mRNA machine, SNS code by the tRNA/aaRS/mRNA machine, and finally the universal genetic code by the tRNA/aaRS/mRNA/ribosome machine. Our hypothesis provides the logical and incremental steps for the origin of the programmed protein synthesis. In order to understand the prebiotic information system better, we converted letter codons into numerical codons in the Universal Genetic Code Table. We have developed a software called CATI (Codon-Amino Acid-Translator-Imitator) to translate randomly chosen numerical codons into corresponding amino acids and vice versa. This conversion has granted us insight into how the translation might have worked in the peptide/RNA world. There is great potential in the application of numerical codons to bioinformatics such as barcoding, DNA mining, or DNA fingerprinting. We constructed the likely biochemical pathways for the origin of translation and the genetic code using the Model-View-Controller (MVC) software framework, and the translation machinery step-by-step. Using AnyLogic software we were able to simulate and visualize the entire evolution of the translation machines and the genetic code. The results indicate that the emergence of the information age from the peptide/RNA world was a watershed event in the origin of life about four billion years ago.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Tammy J Bullwinkle ◽  
Noah M Reynolds ◽  
Medha Raina ◽  
Adil Moghal ◽  
Eleftheria Matsa ◽  
...  

Aminoacyl-tRNA synthetases use a variety of mechanisms to ensure fidelity of the genetic code and ultimately select the correct amino acids to be used in protein synthesis. The physiological necessity of these quality control mechanisms in different environments remains unclear, as the cost vs benefit of accurate protein synthesis is difficult to predict. We show that in Escherichia coli, a non-coded amino acid produced through oxidative damage is a significant threat to the accuracy of protein synthesis and must be cleared by phenylalanine-tRNA synthetase in order to prevent cellular toxicity caused by mis-synthesized proteins. These findings demonstrate how stress can lead to the accumulation of non-canonical amino acids that must be excluded from the proteome in order to maintain cellular viability.


Amino Acids ◽  
2020 ◽  
Author(s):  
Thomas L. Williams ◽  
Debra J. Iskandar ◽  
Alexander R. Nödling ◽  
Yurong Tan ◽  
Louis Y. P. Luk ◽  
...  

AbstractGenetic code expansion is a powerful technique for site-specific incorporation of an unnatural amino acid into a protein of interest. This technique relies on an orthogonal aminoacyl-tRNA synthetase/tRNA pair and has enabled incorporation of over 100 different unnatural amino acids into ribosomally synthesized proteins in cells. Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA from Methanosarcina species are arguably the most widely used orthogonal pair. Here, we investigated whether beneficial effect in unnatural amino acid incorporation caused by N-terminal mutations in PylRS of one species is transferable to PylRS of another species. It was shown that conserved mutations on the N-terminal domain of MmPylRS improved the unnatural amino acid incorporation efficiency up to five folds. As MbPylRS shares high sequence identity to MmPylRS, and the two homologs are often used interchangeably, we examined incorporation of five unnatural amino acids by four MbPylRS variants at two temperatures. Our results indicate that the beneficial N-terminal mutations in MmPylRS did not improve unnatural amino acid incorporation efficiency by MbPylRS. Knowledge from this work contributes to our understanding of PylRS homologs which are needed to improve the technique of genetic code expansion in the future.


2021 ◽  
Author(s):  
Aleksandar Radakovic ◽  
Saurja Dasgupta ◽  
Tom H Wright ◽  
Harry R.M. Aitken ◽  
Jack W Szostak

Aminoacylated tRNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA World prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA World. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid-RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 409
Author(s):  
Tamara L. Hendrickson ◽  
Whitney N. Wood ◽  
Udumbara M. Rathnayake

The twenty amino acids in the standard genetic code were fixed prior to the last universal common ancestor (LUCA). Factors that guided this selection included establishment of pathways for their metabolic synthesis and the concomitant fixation of substrate specificities in the emerging aminoacyl-tRNA synthetases (aaRSs). In this conceptual paper, we propose that the chemical reactivity of some amino acid side chains (e.g., lysine, cysteine, homocysteine, ornithine, homoserine, and selenocysteine) delayed or prohibited the emergence of the corresponding aaRSs and helped define the amino acids in the standard genetic code. We also consider the possibility that amino acid chemistry delayed the emergence of the glutaminyl- and asparaginyl-tRNA synthetases, neither of which are ubiquitous in extant organisms. We argue that fundamental chemical principles played critical roles in fixation of some aspects of the genetic code pre- and post-LUCA.


2019 ◽  
Vol 20 (21) ◽  
pp. 5507 ◽  
Author(s):  
Vladimir Kubyshkin ◽  
Nediljko Budisa

A central question in the evolution of the modern translation machinery is the origin and chemical ethology of the amino acids prescribed by the genetic code. The RNA World hypothesis postulates that templated protein synthesis has emerged in the transition from RNA to the Protein World. The sequence of these events and principles behind the acquisition of amino acids to this process remain elusive. Here we describe a model for this process by following the scheme previously proposed by Hartman and Smith, which suggests gradual expansion of the coding space as GC–GCA–GCAU genetic code. We point out a correlation of this scheme with the hierarchy of the protein folding. The model follows the sequence of steps in the process of the amino acid recruitment and fits well with the co-evolution and coenzyme handle theories. While the starting set (GC-phase) was responsible for the nucleotide biosynthesis processes, in the second phase alanine-based amino acids (GCA-phase) were recruited from the core metabolism, thereby providing a standard secondary structure, the α-helix. In the final phase (GCAU-phase), the amino acids were appended to the already existing architecture, enabling tertiary fold and membrane interactions. The whole scheme indicates strongly that the choice for the alanine core was done at the GCA-phase, while glycine and proline remained rudiments from the GC-phase. We suggest that the Protein World should rather be considered the Alanine World, as it predominantly relies on the alanine as the core chemical scaffold.


2017 ◽  
Vol 115 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Matthias Granold ◽  
Parvana Hajieva ◽  
Monica Ioana Toşa ◽  
Florin-Dan Irimie ◽  
Bernd Moosmann

All extant life employs the same 20 amino acids for protein biosynthesis. Studies on the number of amino acids necessary to produce a foldable and catalytically active polypeptide have shown that a basis set of 7–13 amino acids is sufficient to build major structural elements of modern proteins. Hence, the reasons for the evolutionary selection of the current 20 amino acids out of a much larger available pool have remained elusive. Here, we have analyzed the quantum chemistry of all proteinogenic and various prebiotic amino acids. We find that the energetic HOMO–LUMO gap, a correlate of chemical reactivity, becomes incrementally closer in modern amino acids, reaching the level of specialized redox cofactors in the late amino acids tryptophan and selenocysteine. We show that the arising prediction of a higher reactivity of the more recently added amino acids is correct as regards various free radicals, particularly oxygen-derived peroxyl radicals. Moreover, we demonstrate an immediate survival benefit conferred by the enhanced redox reactivity of the modern amino acids tyrosine and tryptophan in oxidatively stressed cells. Our data indicate that in demanding building blocks with more versatile redox chemistry, biospheric molecular oxygen triggered the selective fixation of the last amino acids in the genetic code. Thus, functional rather than structural amino acid properties were decisive during the finalization of the universal genetic code.


2019 ◽  
Author(s):  
Kwok-Fong Chan ◽  
Stelios Koukouravas ◽  
Joshua Yi Yeo ◽  
Darius Wen-Shuo Koh ◽  
Samuel Ken-En Gan

ABSTRACTMutations underpin the processes in life, be it beneficial or detrimental. While mutations are assumed to be random in the bereft of selection pressures, the genetic code has underlying computable probabilities in amino acid phenotypic changes. With a wide range of implications including drug resistance, understanding amino acid changes is important. In this study, we calculated the probabilities of substitutions mutations in the genetic code leading to the 20 amino acids and stop codons. Our calculations reveal an enigmatic in-built self-preserving organization of the genetic code that averts disruptive changes at the physicochemical properties level. These changes include changes to start, aromatic, negative charged amino acids and stop codons. Our findings thus reveal a statistical mechanism governing the relationship between amino acids and the universal genetic code.


2001 ◽  
Vol 48 (2) ◽  
pp. 323-335 ◽  
Author(s):  
R Sankaranarayanan ◽  
D Moras

Aminoacyl-tRNA synthetases play a central role in maintaining accuracy during the translation of the genetic code. To achieve this challenging task they have to discriminate against amino acids that are very closely related not only in structure but also in chemical nature. A 'double-sieve' editing model was proposed in the late seventies to explain how two closely related amino acids may be discriminated. However, a clear understanding of this mechanism required structural information on synthetases that are faced with such a problem of amino acid discrimination. The first structural basis for the editing model came recently from the crystal structure of isoleucyl-tRNA synthetase, a class I synthetase, which has to discriminate against valine. The structure showed the presence of two catalytic sites in the same enzyme, one for activation, a coarse sieve which binds both isoleucine and valine, and another for editing, a fine sieve which binds only valine and rejects isoleucine. Another structure of the enzyme in complex with tRNA showed that the tRNA is responsible for the translocation of the misactivated amino-acid substrate from the catalytic site to the editing site. These studies were mainly focused on class I synthetases and the situation was not clear about how class II enzymes discriminate against similar amino acids. The recent structural and enzymatic studies on threonyl-tRNA synthetase, a class II enzyme, reveal how this challenging task is achieved by using a unique zinc ion in the active site as well as by employing a separate domain for specific editing activity. These studies led us to propose a model which emphasizes the mirror symmetrical approach of the two classes of enzymes and highlights that tRNA is the key player in the evolution of these class of enzymes.


2006 ◽  
Vol 395 (2) ◽  
pp. 277-284 ◽  
Author(s):  
Hande Gurer-Orhan ◽  
Nuran Ercal ◽  
Suneetha Mare ◽  
Subramaniam Pennathur ◽  
Hilmi Orhan ◽  
...  

In vitro studies demonstrate that the hydroxyl radical converts L-phenylalanine into m-tyrosine, an unnatural isomer of L-tyrosine. Quantification of m-tyrosine has been widely used as an index of oxidative damage in tissue proteins. However, the possibility that m-tyrosine might be generated oxidatively from free L-phenylalanine that could subsequently be incorporated into proteins as an L-tyrosine analogue has received little attention. In the present study, we demonstrate that free m-tyrosine is toxic to cultured CHO (Chinese-hamster ovary) cells. We readily detected radiolabelled material in proteins isolated from CHO cells that had been incubated with m-[14C]tyrosine, suggesting that the oxygenated amino acid was taken up and incorporated into cellular proteins. m-Tyrosine was detected by co-elution with authentic material on HPLC and by tandem mass spectrometric analysis in acid hydrolysates of proteins isolated from CHO cells exposed to m-tyrosine, indicating that free m-tyrosine was incorporated intact rather than being metabolized to other products that were subsequently incorporated into proteins. Incorporation of m-tyrosine into cellular proteins was sensitive to inhibition by cycloheximide, suggesting that protein synthesis was involved. Protein synthesis using a cell-free transcription/translation system showed that m-tyrosine was incorporated into proteins in vitro by a mechanism that may involve L-phenylalanine-tRNA synthetase. Collectively, these observations indicate that m-tyrosine is toxic to cells by a pathway that may involve incorporation of the oxidized amino acid into proteins. Thus misincorporation of free oxidized amino acids during protein synthesis may represent an alternative mechanism for oxidative stress and tissue injury during aging and disease.


Sign in / Sign up

Export Citation Format

Share Document