scholarly journals Deep Learning: A Review

Author(s):  
Rocio Vargas ◽  
Amir Mosavi ◽  
Ramon Ruiz

Deep learning is an emerging area of machine learning (ML) research. It comprises multiple hidden layers of artificial neural networks. The deep learn- ing methodology applies nonlinear transformations and model abstractions of high level in large databases. The recent advancements in deep learning architec- tures within numerous fields have already provided significant contributions in artificial intelligence. This article presents a state of the art survey on the contri- butions and the novel applications of deep learning. The following review chron- ologically presents how and in what major applications deep learning algorithms have been utilized. Furthermore, the superior and beneficial of the deep learning methodology and its hierarchy in layers and nonlinear operations are presented and compared with the more conventional algorithms in the common applica- tions. The state of the art survey further provides a general overview on the novel concept and the ever-increasing advantages and popularity of deep learning.

Author(s):  
Khadidja Zairi

Deep learning is a combined area between neural network and machine learning. Over the last years, deep learning methods have been shown to outperform previous state-of-the-art machine learning techniques in several fields. With computer vision being one of the most prominent cases, the deep learning methodology applies nonlinear transformations and model abstractions of high levels in large databases. Therefore, an overview of DL methodology is provided along with its major modal principals and its hierarchy, which are presented and compared with the more conventional algorithms. Likewise, its popularity and usefulness in the artificial intelligence world are discussed, and some important techniques that increase DL performance are highlighted.


Author(s):  
yifan yang ◽  
Lorenz S Cederbaum

The low-lying electronic states of neutral X@C60(X=Li, Na, K, Rb) have been computed and analyzed by employing state-of-the-art high level many-electron methods. Apart from the common charge-separated states, well known...


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


Author(s):  
Jwalin Bhatt ◽  
Khurram Azeem Hashmi ◽  
Muhammad Zeshan Afzal ◽  
Didier Stricker

In any document, graphical elements like tables, figures, and formulas contain essential information. The processing and interpretation of such information require specialized algorithms. Off-the-shelf OCR components cannot process this information reliably. Therefore, an essential step in document analysis pipelines is to detect these graphical components. It leads to a high-level conceptual understanding of the documents that makes digitization of documents viable. Since the advent of deep learning, the performance of deep learning-based object detection has improved many folds. In this work, we outline and summarize the deep learning approaches for detecting graphical page objects in the document images. Therefore, we discuss the most relevant deep learning-based approaches and state-of-the-art graphical page object detection in document images. This work provides a comprehensive understanding of the current state-of-the-art and related challenges. Furthermore, we discuss leading datasets along with the quantitative evaluation. Moreover, it discusses briefly the promising directions that can be utilized for further improvements.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 22
Author(s):  
David Fassbender ◽  
Tatina Minav

For the longest time, valve-controlled, centralized hydraulic systems have been the state-of-the-art technology to actuate heavy-duty mobile machine (HDMM) implements. Due to the typically low energy efficiency of those systems, a high number of promising, more-efficient actuator concepts has been proposed by academia as well as industry over the last decades as potential replacements for valve control—e.g., independent metering, displacement control, different types of electro-hydraulic actuators (EHAs), electro-mechanic actuators, or hydraulic transformers. This paper takes a closer look on specific HDMM applications for these actuator concepts to figure out where which novel concept can be a better alternative to conventional actuator concepts, and where novel concepts might fail to improve. For this purpose, a novel evaluation algorithm for actuator–HDMM matches is developed based on problem aspects that can indicate an unsuitable actuator–HDMM match. To demonstrate the functionality of the match evaluation algorithm, four actuator concepts and four HDMM types are analyzed and rated in order to form 16 potential actuator–HDMM matches that can be evaluated by the novel algorithm. The four actuator concepts comprise a conventional valve-controlled concept and three different types of EHAs. The HDMM types are excavator, wheel loader, backhoe, and telehandler. Finally, the evaluation of the 16 matches results in 16 mismatch values, of which the lowest indicates the “perfect match”. Low mismatch values could be found in general for EHAs in combination with most HDMMs but also for a valve-controlled actuator concept in combination with a backhoe. Furthermore, an analysis of the concept limitations with suggestions for improvement is included.


Author(s):  
Bhanu Chander

Artificial intelligence (AI) is defined as a machine that can do everything a human being can do and produce better results. Means AI enlightening that data can produce a solution for its own results. Inside the AI ellipsoidal, Machine learning (ML) has a wide variety of algorithms produce more accurate results. As a result of technology, improvement increasing amounts of data are available. But with ML and AI, it is very difficult to extract such high-level, abstract features from raw data, moreover hard to know what feature should be extracted. Finally, we now have deep learning; these algorithms are modeled based on how human brains process the data. Deep learning is a particular kind of machine learning that provides flexibility and great power, with its attempts to learn in multiple levels of representation with the operations of multiple layers. Deep learning brief overview, platforms, Models, Autoencoders, CNN, RNN, and Appliances are described appropriately. Deep learning will have many more successes in the near future because it requires very little engineering by hand.


Author(s):  
Usef Faghihi ◽  
Sioui Maldonado-Bouchard ◽  
Mario Incayawar

Today, deep learning (DL) algorithms are intertwined with our daily life. This subdomain of artificial intelligence (AI) technology is used to unlock your phone by only detecting your face, find the best path from work to your home or vice versa, or detect anomalies in the human cells taken for lab tests. Yet, although AI technology is helping in many fields, whether it has done so in the medical field is debatable. DL lacks reasoning; it is unable to determine the causes of events. This is especially crucial when it comes to the health care sector. At this point, computers cannot help physicians with their duties. On the contrary, they are the cause of burnout in more than half of physicians in United States. One of the causes of burnout repeatedly pointed out by physicians is the digitalization of medicine. This chapter presents some of the AI approaches that could help physicians. It also discusses the current limitations and dangers inherent to many of today’s state-of-the-art AI systems. The authors provide some ideas about the future of AI in pain medicine and psychiatry.


2020 ◽  
Vol 6 (10) ◽  
pp. 110
Author(s):  
Francesco Lombardi ◽  
Simone Marinai

Nowadays, deep learning methods are employed in a broad range of research fields. The analysis and recognition of historical documents, as we survey in this work, is not an exception. Our study analyzes the papers published in the last few years on this topic from different perspectives: we first provide a pragmatic definition of historical documents from the point of view of the research in the area, then we look at the various sub-tasks addressed in this research. Guided by these tasks, we go through the different input-output relations that are expected from the used deep learning approaches and therefore we accordingly describe the most used models. We also discuss research datasets published in the field and their applications. This analysis shows that the latest research is a leap forward since it is not the simple use of recently proposed algorithms to previous problems, but novel tasks and novel applications of state of the art methods are now considered. Rather than just providing a conclusive picture of the current research in the topic we lastly suggest some potential future trends that can represent a stimulus for innovative research directions.


2019 ◽  
Vol 128 (5) ◽  
pp. 1286-1310 ◽  
Author(s):  
Oscar Mendez ◽  
Simon Hadfield ◽  
Nicolas Pugeault ◽  
Richard Bowden

Abstract The use of human-level semantic information to aid robotic tasks has recently become an important area for both Computer Vision and Robotics. This has been enabled by advances in Deep Learning that allow consistent and robust semantic understanding. Leveraging this semantic vision of the world has allowed human-level understanding to naturally emerge from many different approaches. Particularly, the use of semantic information to aid in localisation and reconstruction has been at the forefront of both fields. Like robots, humans also require the ability to localise within a structure. To aid this, humans have designed high-level semantic maps of our structures called floorplans. We are extremely good at localising in them, even with limited access to the depth information used by robots. This is because we focus on the distribution of semantic elements, rather than geometric ones. Evidence of this is that humans are normally able to localise in a floorplan that has not been scaled properly. In order to grant this ability to robots, it is necessary to use localisation approaches that leverage the same semantic information humans use. In this paper, we present a novel method for semantically enabled global localisation. Our approach relies on the semantic labels present in the floorplan. Deep Learning is leveraged to extract semantic labels from RGB images, which are compared to the floorplan for localisation. While our approach is able to use range measurements if available, we demonstrate that they are unnecessary as we can achieve results comparable to state-of-the-art without them.


Author(s):  
Sawyer D. Campbell ◽  
Ronald P. Jenkins ◽  
Philip J. O'Connor ◽  
Douglas Werner

Sign in / Sign up

Export Citation Format

Share Document