scholarly journals Entropy Density Acceleration and Minimum Dissipation Principle: Correlation with Heat and Matter Transfer in Glucose Catabolism

Author(s):  
Roberto Zivieri ◽  
Nicola Pacini

The heat and matter transfer during glucose catabolism in living systems and their relation with entropy production are a challenging subject of the classical thermodynamics applied to biology. In this respect, an analogy between mechanics and thermodynamics has been performed via the definition of the entropy density acceleration expressed by the time derivative of the rate of entropy density and related to heat and matter transfer in minimum living systems. Cells are regarded as open thermodynamic systems that exchange heat and matter resulting from irreversible processes with the intercellular environment. Prigogine’s minimum energy dissipation principle is reformulated using the notion of entropy density acceleration applied to glucose catabolism. It is shown that, for out-of-equilibrium states, the calculated entropy density acceleration is finite and negative and approaches as a function of time a zero value at global thermodynamic equilibrium for heat and matter transfer independently of the cell type and the metabolic pathway. These results could be important for a deeper understanding of entropy generation and its correlation with heat transfer in cell biology with special regard to glucose catabolism representing the prototype of irreversible reactions and a crucial metabolic pathway in stem cells and cancer stem cells.

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 929 ◽  
Author(s):  
Roberto Zivieri ◽  
Nicola Pacini

The heat and matter transfer during glucose catabolism in living systems and their relation with entropy production are a challenging subject of the classical thermodynamics applied to biology. In this respect, an analogy between mechanics and thermodynamics has been performed via the definition of the entropy density acceleration expressed by the time derivative of the rate of entropy density and related to heat and matter transfer in minimum living systems. Cells are regarded as open thermodynamic systems that exchange heat and matter resulting from irreversible processes with the intercellular environment. Prigogine’s minimum energy dissipation principle is reformulated using the notion of entropy density acceleration applied to glucose catabolism. It is shown that, for out-of-equilibrium states, the calculated entropy density acceleration for a single cell is finite and negative and approaches as a function of time a zero value at global thermodynamic equilibrium for heat and matter transfer independently of the cell type and the metabolic pathway. These results could be important for a deeper understanding of entropy generation and its correlation with heat transfer in cell biology with special regard to glucose catabolism representing the prototype of irreversible reactions and a crucial metabolic pathway in stem cells and cancer stem cells.


2017 ◽  
Vol 14 (2) ◽  
pp. 372-384 ◽  
Author(s):  
Tamara J. Abou-Antoun ◽  
James S. Hale ◽  
Justin D. Lathia ◽  
Stephen M. Dombrowski

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Takashi Yokoo ◽  
Kei Matsumoto ◽  
Shinya Yokote

Significant advances have been made in stem cell research over the past decade. A number of nonhematopoietic sources of stem cells (or progenitor cells) have been identified, including endothelial stem cells and neural stem cells. These discoveries have been a major step toward the use of stem cells for potential clinical applications of organ regeneration. Accordingly, kidney regeneration is currently gaining considerable attention to replace kidney dialysis as the ultimate therapeutic strategy for renal failure. However, due to anatomic complications, the kidney is believed to be the hardest organ to regenerate; it is virtually impossible to imagine such a complicated organ being completely rebuilt from pluripotent stem cells by gene or chemical manipulation. Nevertheless, several groups are taking on this big challenge. In this manuscript, current advances in renal stem cell research are reviewed and their usefulness for kidney regeneration discussed. We also reviewed the current knowledge of the emerging field of renal stem cell biology.


2017 ◽  
Vol 4 (4) ◽  
pp. 533-542 ◽  
Author(s):  
Guangdun Peng ◽  
Patrick P. L. Tam ◽  
Naihe Jing

Abstract Establishment of progenitor cell populations and lineage diversity during embryogenesis and the differentiation of pluripotent stem cells is a fascinating and intricate biological process. Conceptually, an understanding of this developmental process provides a framework to integrate stem-cell pluripotency, cell competence and differentiating potential with the activity of extrinsic and intrinsic molecular determinants. The recent advent of enabling technologies of high-resolution transcriptome analysis at the cellular, population and spatial levels proffers the capability of gaining deeper insights into the attributes of the gene regulatory network and molecular signaling in lineage specification and differentiation. In this review, we provide a snapshot of the emerging enabling genomic technologies that contribute to the study of development and stem-cell biology.


2020 ◽  
Vol 133 (20) ◽  
pp. jcs255166

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Federico Pecori is first author on ‘Mucin-type O-glycosylation controls pluripotency in mouse embryonic stem cells via Wnt receptor endocytosis’, published in JCS. Federico is a PhD student in the lab of Shoko Nishihara at the Laboratory of Cell Biology, Department of Bioinformatics, Soka University, Tokyo, Japan, where he is interested in the mechanisms regulating stem cell identity.


Cells ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 255 ◽  
Author(s):  
Miruna Mihaela Micheu ◽  
Alina Ioana Scarlatescu ◽  
Alexandru Scafa-Udriste ◽  
Maria Dorobantu

Despite significant progress in treating ischemic cardiac disease and succeeding heart failure, there is still an unmet need to develop effective therapeutic strategies given the persistent high-mortality rate. Advances in stem cell biology hold great promise for regenerative medicine, particularly for cardiac regeneration. Various cell types have been used both in preclinical and clinical studies to repair the injured heart, either directly or indirectly. Transplanted cells may act in an autocrine and/or paracrine manner to improve the myocyte survival and migration of remote and/or resident stem cells to the site of injury. Still, the molecular mechanisms regulating cardiac protection and repair are poorly understood. Stem cell fate is directed by multifaceted interactions between genetic, epigenetic, transcriptional, and post-transcriptional mechanisms. Decoding stem cells’ “panomic” data would provide a comprehensive picture of the underlying mechanisms, resulting in patient-tailored therapy. This review offers a critical analysis of omics data in relation to stem cell survival and differentiation. Additionally, the emerging role of stem cell-derived exosomes as “cell-free” therapy is debated. Last but not least, we discuss the challenges to retrieve and analyze the huge amount of publicly available omics data.


2017 ◽  
Author(s):  
Brock Roberts ◽  
Amanda Haupt ◽  
Andrew Tucker ◽  
Tanya Grancharova ◽  
Joy Arakaki ◽  
...  

AbstractWe present a CRISPR/Cas9 genome editing strategy to systematically tag endogenous proteins with fluorescent tags in human inducible pluripotent stem cells. To date we have generated multiple human iPSC lines with GFP tags for 10 proteins representing key cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, lamin B1, non-muscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome editing methodology using Cas9 ribonuclear protein electroporation and fluorescence-based enrichment of edited cells resulted in <0.1-24% HDR across all experiments. Clones were generated from each edited population and screened for precise editing. ∼25% of the clones contained precise mono-allelic edits at the targeted locus. Furthermore, 92% (36/39) of expanded clonal lines satisfied key quality control criteria including genomic stability, appropriate expression and localization of the tagged protein, and pluripotency. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. The data described here, including our editing protocol, genetic screening, quality control assays, and imaging observations, can serve as an initial resource for genome editing in cell biology and stem cell research.


2021 ◽  
Author(s):  
Majid Mehravar ◽  
Yogesh Kumar ◽  
Moshe Olshansky ◽  
Dhiru Bansal ◽  
Craig Dent ◽  
...  

N6-methyladenosine (m6A) is the most predominant internal mRNA modification in eukaryotes, recognised by its reader proteins (so-called m6A-readers) for regulating subsequent mRNA fates, such as splicing, export, localisation, decay, stability, and translation to control several biological processes. Although a few m6A-readers have been identified, yet the list is incomplete. Here, we identify a new m6A-reader protein, Moloney leukaemia virus 10 homologue (MOV10), in mouse embryonic stem cells (mESCs). MOV10 recognises m6A-containing mRNAs with a conserved GGm6ACU motif. Mechanistic studies uncover that MOV10 facilitates mRNA decay of its bound m6A- containing mRNAs in an m6A-dependent manner within the cytoplasmic processing bodies (P-bodies). Furthermore, MOV10 decays the Gsk-3beta mRNA through m6A that stabilises the BETA-CATENIN expression of a WNT/BETA-CATENIN signalling pathway to regulate downstream NANOG expression for maintaining the mESC state. Thus, our findings reveal how a newly identified m6A-reader, MOV10 mediates mRNA decay via m6A that impact embryonic stem cell biology.


2015 ◽  
Author(s):  
◽  
Jason Neville Sterrenberg

The therapeutic potential of stem cells is already being harnessed in clinical trails. Of even greater therapeutic potential has been the discovery of mechanisms to reprogram differentiated cells into a pluripotent stem cell-like state known as induced pluripotent stem cells (iPSCs). Stem cell nature is governed and maintained by a hierarchy of transcription factors, the apex of which is OCT4. Although much research has elucidated the transcriptional regulation of OCT4, OCT4 regulated gene expression profiles and OCT4 transcriptional activation mechanisms in both stem cell biology and cellular reprogramming to iPSCs, the fundamental biochemistry surrounding the OCT4 transcription factor remains largely unknown. In order to analyze the biochemical relationship between HSP90 and human OCT4 we developed an exogenous active human OCT4 expression model with human OCT4 under transcriptional control of a constitutive promoter. We identified the direct interaction between HSP90 and human OCT4 despite the fact that the proteins predominantly display differential subcellular localizations. We show that HSP90 inhibition resulted in degradation of human OCT4 via the ubiquitin proteasome degradation pathway. As human OCT4 and HSP90 did not interact in the nucleus, we suggest that HSP90 functions in the cytoplasmic stabilization of human OCT4. Our analysis suggests HSP90 inhibition inhibits the transcriptional activity of human OCT4 dimers without affecting monomeric OCT4 activity. Additionally our data suggests that the HSP90 and human OCT4 complex is modulated by phosphorylation events either promoting or abrogating the interaction between HSP90 and human OCT4. Our data suggest that human OCT4 displays the characteristics describing HSP90 client proteins, therefore we identify human OCT4 as a putative HSP90 client protein. The regulation of the transcription factor OCT4 by HSP90 provides fundamental insights into the complex biochemistry of stem cell biology. This may also be suggestive that HSP90 not only regulates stem cell biology by maintaining routine cellular homeostasis but additionally through the direct regulation of pluripotency factors.


Sign in / Sign up

Export Citation Format

Share Document