scholarly journals Modeling the Strategies for Improved Efficacy and Crosslink Depth of Photo-Initiated Polymerization and Phototherapy

Author(s):  
Jui-Teng Lin ◽  
Hsia-Wei Liu ◽  
Kuo-Ti Chen ◽  
Da-Chuan Cheng

Optimal conditions for maximum efficacy of photoinitiated polymerization are theoretically presented. Analytic formulas are shown for the crosslink time, crosslink depth and efficacy function. The roles of photoinitiator (PI) concentration, diffusion depth and light intensity on the polymerization spatial and temporal profiles, for both uniform and non-uniform cases, are presented. For optimal efficacy, a strategy via controlled PI concentration is proposed, where re-supply of PI in high light intensity may achieve a combined-efficacy similar to low light intensity, but has a much faster procedure. A new criterion of efficacy based on the polymerization (crosslink) [strength] and [depth] is introduced. Experimental data are analyzed for the role of PI concentration and light intensity on the gelation time and efficacy.

Author(s):  
Jui-Teng Lin ◽  
Kuo-Ti Chen ◽  
Hsia-Wei Liu ◽  
Da-Chuan Cheng

The kinetics and optimal efficacy conditions of photoinitiated polymerization are theoretically presented. Analytic formulas are derived for the crosslink time, crosslink depth and efficacy function. The roles of photosensitizer (PS) concentration, diffusion depth and light intensity on the polymerization spatial and temporal profiles, for both uniform and non-uniform cases, are presented . For optimal efficacy, a strategy via controlled PS concentration is proposed, where re-supply of PS in high light intensity may achieve a combined-efficacy similar to low light intensity, but has a much faster procedure. A new criterion of efficacy based on the polymerization (crosslink) [strength] and [depth] is introduced.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 217 ◽  
Author(s):  
Jui-Teng Lin ◽  
Hsia-Wei Liu ◽  
Kuo-Ti Chen ◽  
Da-Chuan Cheng

Optimal conditions for maximum efficacy of photoinitiated polymerization are theoretically presented. Analytic formulas are shown for the crosslink time, crosslink depth, and efficacy function. The roles of photoinitiator (PI) concentration, diffusion depth, and light intensity on the polymerization spatial and temporal profiles are presented for both uniform and non-uniform cases. For the type I mechanism, higher intensity may accelerate the polymer action process, but it suffers a lower steady-state efficacy. This may be overcome by a controlled re-supply of PI concentration during the light exposure. In challenging the conventional Beer–Lambert law (BLL), a generalized, time-dependent BLL (a Lin-law) is derived. This study, for the first time, presents analytic formulas for curing depth and crosslink time without the assumption of thin-film or spatial average. Various optimal conditions are developed for maximum efficacy based on a numerically-fit A-factor. Experimental data are analyzed for the role of PI concentration and light intensity on the gelation (crosslink) time and efficacy.


2017 ◽  
Vol 14 (24) ◽  
pp. 5693-5704 ◽  
Author(s):  
Gabriella M. Weiss ◽  
Eva Y. Pfannerstill ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
Marcel T. J. van der Meer

Abstract. Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8001 ◽  
Author(s):  
Jiangnan Sun ◽  
Xiaomei Chi ◽  
Mingfang Yang ◽  
Jingyun Ding ◽  
Dongtao Shi ◽  
...  

Small sea urchins Strongylocentrotus intermedius (1–2 cm of test diameter) are exposed to different environments of light intensities after being reseeded to the sea bottom. With little information available about the behavioral responses of S. intermedius to different light intensities in the environment, we carried out an investigation on how S. intermedius is affected by three light intensity environments in terms of phototaxis, foraging and righting behaviors. They were no light (zero lx), low light intensity (24–209 lx) and high light intensity (252–2,280 lx). Light intensity had obvious different effects on phototaxis. In low light intensity, sea urchins moved more and spent significantly more time at the higher intensity (69–209 lx) (P = 0.046). S. intermedius in high light intensity, in contrast, spent significantly more time at lower intensity (252–690 lx) (P = 0.005). Unexpectedly, no significant difference of movement (average velocity and total distance covered) was found among the three light intensities (P > 0.05). Foraging behavior of S. intermedius was significantly different among the light intensities. In the no light environment, only three of ten S. intermedius found food within 7 min. In low light intensity, nine of 10 sea urchins showed successful foraging behavior to the food placed at 209 lx, which was significantly higher than the ratio of the number (two of 10) when food was placed at 24 lx (P = 0.005). In the high light intensity, in contrast, significantly less sea urchins (three of 10) found food placed at the higher light intensity (2,280 lx) compared with the lower light intensity (252 lx) (10/10, P = 0.003). Furthermore, S. intermedius showed significantly longer righting response time in the high light intensity compared with both no light (P = 0.001) and low light intensity (P = 0.031). No significant difference was found in righting behavior between no light and low light intensity (P = 0.892). The present study indicates that light intensity significantly affects phototaxis, foraging and righting behaviors of S. intermedius and that ~200 lx might be the appropriate light intensity for reseeding small S. intermedius.


1998 ◽  
Vol 53 (1-2) ◽  
pp. 93-100 ◽  
Author(s):  
Lu Fan ◽  
Avigad Vonshak ◽  
Aliza Zarka ◽  
Sammy Boussiba

Abstract The photoprotective function of the ketocarotenoid astaxanthin in Haematococcus was questioned. When exposed to high irradiance and/or nutritional stress, green Haematococcus cells turned red due to accumulation of an immense quantity of the red pigment astaxanthin. Our results demonstrate that: 1) The addition of diphenylamine, an inhibitor of astaxanthin biosynthesis, causes cell death under high light intensity; 2) Red cells are susceptible to high light stress to the same extent or even higher then green ones upon exposure to a very high light intensity (4000 μmol photon m-2 s-1); 3) Addition of 1O2 generators (methylene blue, rose bengal) under noninductive conditions (low light of 100 (μmol photon m-2 s-1) induced astaxanthin accumulation. This can be reversed by an exogenous 1O2 quencher (histidine); 4) Histidine can prevent the accumulation of astaxanthin induced by phosphate starvation. We suggest that: 1) Astaxanthin is the result of the photoprotection process rather than the protective agent; 2) 1O2 is involved indirectly in astaxanthin accumulation process.


Weed Science ◽  
1978 ◽  
Vol 26 (5) ◽  
pp. 432-433 ◽  
Author(s):  
R. M. Devlin ◽  
C. N. Saras ◽  
M. J. Kisiel ◽  
A. S. Kostusiak

Chlorophyll content of wheat (Triticum aestivum L. ‘Mericopa’) and corn (Zea mays L. ‘Merit’) treated with the herbicide fluridone {1-methyl-3-phenyl-5-[3-(trifluoromethyl)-phenyl]-4(1H)-pyridinone} and grown under high light intensity (10.8 klux), was markedly reduced. Corn and wheat germinated from seeds treated with 10 uM fluridone and grown for 6 days were almost completely bleached. Under low light intensity (108 lux) the influence of fluridone on chlorophyll production was greatly reduced. Under very low light intensity (21.5 lux) this influence was almost completely lost. The effect of light on the activity of fluridone suggests that the inhibition of carotenoid production may represent the mode of action of this herbicide. This study shows that the carotenoid content of wheat or corn drops dramatically when these plants are treated with fluridone.


Weed Science ◽  
2011 ◽  
Vol 59 (1) ◽  
pp. 14-21 ◽  
Author(s):  
H. Hatterman-Valenti ◽  
A. Pitty ◽  
M. Owen

Controlled environment experiments showed that velvetleaf plants grown under drought stress or low temperature (LT) treatments had greater leaf epicuticular wax (ECW) deposition compared to plants grown in soil with moisture at field capacity (FC) or a high temperature (HT) regime. Light intensity did not affect ECW deposition; however, increasing light intensity decreased the leaf ECW ester content and increased the secondary alcohol content. Plants grown at an LT regime or under FC had leaf ECW with fewer hydrocarbons and more esters than those grown at an HT or drought stress regime. Velvetleaf absorption of acifluorfen increased as light intensity decreased for plants grown in adequate soil water content, while the opposite was true for drought-stressed plants. Velvetleaf absorption of acifluorfen was approximately 3 and 10 times greater, respectively, with the addition of 28% urea ammonium nitrate (UAN) in comparison to crop oil concentrate (COC) or no adjuvant, regardless of the environmental treatments. Plants absorbed more acifluorfen when subjected to the LT regime in comparison to the HT regime when UAN was the adjuvant, while the opposite was true when COC was the adjuvant. Velvetleaf absorption of acifluorfen was not affected by drought stress when COC or no adjuvant was used and varied between studies when UAN was used. Velvetleaf absorption of bentazon was greatest for plants grown under HT/FC or high light/FC treatments and least with plants grown under HT/drought stress or low light/drought stress treatments, regardless of the adjuvant. However, bentazon absorption was higher with the addition of an adjuvant and for plants grown at a high light intensity or FC condition compared with medium to low light intensity or drought stress treatments.


1989 ◽  
Vol 44 (5-6) ◽  
pp. 524-536 ◽  
Author(s):  
U. Heber ◽  
J. Viil ◽  
S. Neimanis ◽  
T. Mimura ◽  
K.-J. Dietz

Abstract Effects of Pi deficiency on photosynthesis ot isolated spinach chloroplasts were examined. The following observations were made: (1) Chloroplasts isolated in Pi-free media evolved oxygen in the light in the absence of added Pi until acid-extractable Pi in the chloroplasts had decreased to 1 to 2.5 m M . This Pi was unavailable for photophosphorylation as shown by the inability of the chloroplasts to respond by oxygen evolution to the addition of PGA. In the state of Pi-deficiency, stromal ATP to A DP ratios were in the light close to or below ratios observed in the dark. In the presence of 2 mᴍ PGA, addition of 20 μm Pi was insufficient to increase ATP to ADP ratios, but sufficient for appreciable oxygen evolution. (2) More Pi was available for oxygen evolution of phosphate-deficient chloroplasts at low levels of C02 than at high levels. This was due mainly to the suppression of oxygenation of RuBP by high C02 levels which prevented formation of phosphoglycolate and the subsequent release of Pi into the chloroplast stroma. (3) More oxygen was produced by phosphate-deficient chloroplasts at a low light intensity than at a high light intensity. This was due to increased availability of endogenous Pi under low light and to photoinhibition of the chloroplasts by high light. The main product of photosynthesis of phosphate-deficient chloroplasts in the presence of a high bicarbonate concentration was starch, and the main soluble product was PGA. (4) After phosphate-deficient chloroplasts had ceased to evolve oxygen in the light, they be­ came photosensitive. Part of the loss of the capacity for oxygen evolution is attributed to leakage of PGA, but the main reason for loss of function is photoinactivation of electron transport. Both photosystems of the electron transport chain were damaged by light. (5) Protection against photoinactivation was provided by coupled electron transport. Photo­ inactivation of phosphate-deficient chloroplasts was less extensive in the presence of low C02 concentrations which permitted oxygenation of RuBP than at high CO2 concentrations. Electron transport to C02 and other physiological electron acceptors and to the herbicide methylviologen was also protective. However, electron transport to oxygen in the Mehler reaction failed to provide appreciable protection against high light intensities, because oxygen reduction is slow and reactive oxygen species produced in the light contribute to photoinactivation.


2010 ◽  
Vol 34 (3) ◽  
pp. 417-423 ◽  
Author(s):  
Maria Terezinha Silveira Paulilo ◽  
Flávia Simão Lapa ◽  
Miriam de Barcellos Falkenberg

Cordia curassavica (Jacq.) Roem. & Schult. (Boraginaceae), also referred to as Cordia verbenacea DC, has been traditionally used for medicinal purposes. This study was driven to verify the behavior of the species in similar conditions to its natural environment, such as high light intensity and sandbank soil, and in conditions of low light intensity and fertilized substratum (dystroferric red nitosoil plus earthworm humus). The growth of the plant, the income of leaf crude extracts and, in the alcoholic extract, the number of substances found in thin layer cromatography and the toxicity of the substratum was observed. The results indicated that the growth of the root biomass, stem and leaves in discharge or lower light intensity was similar, but smaller in sandbank soil than in fertilized soil. The relative income of extracts in ether of petroleum and alcohol was larger in high light intensity and fertilized substratum. The light intensity and the substratum type didn't affect the number of substances detected in the alcoholic extract or the toxicity of this extract. Stains corresponding to the rosmarinic acid were only evidenced in some samples of the alcoholic extract, not allowing the verification of the effect of the treatments about its production.


Sign in / Sign up

Export Citation Format

Share Document