scholarly journals Urban Train Soil-Structure Interaction Modeling and Analysis

Author(s):  
Danial Mohammadzadeh S. ◽  
Nader Karballaeezadeh ◽  
Morteza Mohemmi ◽  
Amir Mosavi ◽  
Annamária R. Várkonyi-Kóczy

Design and advancement of the durable urban train infrastructures are of utmost importance for reliable mobility in the smart cities of the future. Given the importance of urban train lines, tunnels, and subway stations, these structures should be meticulously analyzed. In this research, two-dimensional modeling and analysis of the soil-structure mass of the Alan Dasht station of Mashhad Urban Train are studied. The two-dimensional modeling was conducted using Hashash’s method and displacement interaction. After calculating the free-field resonance and side distortion of the soil mass, this resonance was entered into PLAXIS finite element program, and finally, stress and displacement contours together with the bending moment, shear force and axial force curves of the structure were obtained.

2011 ◽  
Vol 121-126 ◽  
pp. 1521-1525
Author(s):  
Juan Xiong ◽  
Lan Feng Sun

In order to improve the design and the two-dimensional drawing identifying technology of freeform surface for the complicated components, such as turbine runner blades, based on the strong modeling technology of CAD/CAM and the software UG of CAD/CAM, detailed analyses three-dimensional modeling of turbine runner, then explain the design difficulties and three-dimensional effect of freeform surface, in order to resolve part of the design difficulties of freeform surface. Provide the original database for computer auxiliary fabricating and explain the practicability of CAD/CAM by analyses three-dimensional modeling of turbine runner.


Author(s):  
Danial Mohammadzadeh ◽  
Nader Karballaeezadeh ◽  
Morteza Mohemmi ◽  
Amir Mosavi ◽  
Annamária R. Várkonyi-Kóczy

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Mert Besken ◽  
Jan de Boer ◽  
Grégoire Mathys

Abstract We discuss some general aspects of commutators of local operators in Lorentzian CFTs, which can be obtained from a suitable analytic continuation of the Euclidean operator product expansion (OPE). Commutators only make sense as distributions, and care has to be taken to extract the right distribution from the OPE. We provide explicit computations in two and four-dimensional CFTs, focusing mainly on commutators of components of the stress-tensor. We rederive several familiar results, such as the canonical commutation relations of free field theory, the local form of the Poincaré algebra, and the Virasoro algebra of two-dimensional CFT. We then consider commutators of light-ray operators built from the stress-tensor. Using simplifying features of the light sheet limit in four-dimensional CFT we provide a direct computation of the BMS algebra formed by a specific set of light-ray operators in theories with no light scalar conformal primaries. In four-dimensional CFT we define a new infinite set of light-ray operators constructed from the stress-tensor, which all have well-defined matrix elements. These are a direct generalization of the two-dimensional Virasoro light-ray operators that are obtained from a conformal embedding of Minkowski space in the Lorentzian cylinder. They obey Hermiticity conditions similar to their two-dimensional analogues, and also share the property that a semi-infinite subset annihilates the vacuum.


2013 ◽  
Vol 479-480 ◽  
pp. 1139-1143
Author(s):  
Wen Yi Hung ◽  
Chung Jung Lee ◽  
Wen Ya Chung ◽  
Chen Hui Tsai ◽  
Ting Chen ◽  
...  

Dramatic failure of pile foundations caused by the soil liquefaction was founded leading to many studies for investigating the seismic behavior of pile. The failures were often accompanied with settlement, lateral displacement and tilting of superstructures. Therefore soil-structure interaction effects must be properly considered in the pile design. Two tests by using the centrifuge shaking table were conducted at an acceleration field of 80 g to investigate the seismic response of piles attached with different tip mass and embedded in liquefied or non-liquefied deposits during shaking. It was found that the maximum bending moment of pile occurs at the depth of 4 m and 5 m for dry sand and saturated sand models, respectively. The more tip mass leads to the more lateral displacement of pile head and the more residual bending moment.


2012 ◽  
Vol 57 (12) ◽  
pp. 4055-4073
Author(s):  
Hani Eskandari ◽  
Orcun Goksel ◽  
Septimiu E Salcudean ◽  
Robert Rohling

Sign in / Sign up

Export Citation Format

Share Document