scholarly journals First Report and Comparative Genomics Analysis of a blaOXA-244–Harbouring Escherichia coli Isolate Recovered in American Continent

Author(s):  
Deisy J Abril ◽  
Ingrid Gisell Bustos Moya ◽  
Ricaurte Alejandro Marquez-Ortiz ◽  
Diego Fernando Josa Montero ◽  
Zayda Lorena Corredor Rozo ◽  
...  

The carbapenemase OXA-244 is a derivate of OXA-48, and its detection is very difficult in laboratories. Here we report the identification and genomic analysis of an Escherichia coli isolate (28Eco12) harbouring the blaOXA-244 gene identified in Colombia, South America. The 28Eco12 isolate was identified during a retrospective study and it was recovered from a patient treated in Colombia. The complete nucleotide sequence was established using the PacBio platform. A comparative genomics analysis with other blaOXA-244–harbouring Escherichia coli strains was performed. The 28Eco12 isolate belonged to sequence type (ST) 38 and its genome was composed of two molecules, a chromosome of 5,343,367 bp and a plasmid of 92,027 bp, which belonged to the incompatibility group IncY and did not harbour resistance genes. The blaOXA-244 gene was chromosomally-encoded and mobilized by an ISR1-related Tn6237 composite transposon. Notably, this transposon was inserted and located within a new genomic island. For our knowledge this is the first report of a blaOXA-244–harbouring Escherichia coli isolate in American continent.Our results suggest that the introduction of the OXA-244-producing E. coli isolate was through clonal expansion of the ST38 pandemic clone. Other isolates producing OXA-244 could be circulating silently on the American continent.

Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 222 ◽  
Author(s):  
Deisy Abril ◽  
Ingrid Gisell Bustos Moya ◽  
Ricaurte Alejandro Marquez-Ortiz ◽  
Diego Fernando Josa Montero ◽  
Zayda Lorena Corredor Rozo ◽  
...  

The carbapenemase OXA-244 is a derivate of OXA-48, and its detection is very difficult in laboratories. Here, we report the identification and genomic analysis of an Escherichia coli isolate (28Eco12) harboring the blaOXA-244 gene identified in Colombia, South America. The 28Eco12 isolate was identified during a retrospective study, and it was recovered from a patient treated in Colombia. The complete nucleotide sequence was established using the PacBio platform. A comparative genomics analysis with other blaOXA-244–harboring Escherichia coli strains was performed. The 28Eco12 isolate belonged to sequence type (ST) 38, and its genome was composed of two molecules, a chromosome of 5,343,367 bp and a plasmid of 92,027 bp, which belonged to the incompatibility group IncY and did not harbor resistance genes. The blaOXA-244 gene was chromosomally encoded and mobilized by an ISR1-related Tn6237 composite transposon. Notably, this transposon was inserted and located within a new genomic island. To our knowledge, this is the first report of a blaOXA-244–harboring Escherichia coli isolate in America. Our results suggest that the introduction of the OXA-244-producing E. coli isolate was through clonal expansion of the ST38 pandemic clone. Other isolates producing OXA-244 could be circulating silently in America.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Amit Ranjan ◽  
Sabiha Shaik ◽  
Nishant Nandanwar ◽  
Arif Hussain ◽  
Sumeet K. Tiwari ◽  
...  

ABSTRACTEscherichia coli, an intestinal Gram-negative bacterium, has been shown to be associated with a variety of diseases in addition to intestinal infections, such as urinary tract infections (UTIs), meningitis in neonates, septicemia, skin and soft tissue infections (SSTIs), and colisepticemia. Thus, for nonintestinal infections, it is categorized as extraintestinal pathogenicE. coli(ExPEC). It is also an opportunistic pathogen, causing cross infections, notably as an agent of zoonotic diseases. However, comparative genomic data providing functional and genetic coordinates for ExPEC strains associated with these different types of infections have not proven conclusive. In the study reported here, ExPECE. coliisolated from SSTIs was characterized, including virulence and drug resistance profiles, and compared with isolates from patients suffering either pyelonephritis or septicemia. Results revealed that the majority of the isolates belonged to two pathogenic phylogroups, B2 and D. Approximately 67% of the isolates were multidrug resistant (MDR), with 85% producing extended-spectrum beta-lactamase (ESBL) and 6% producing metallo-beta-lactamase (MBL). TheblaCTX-M-15genotype was observed in at least 70% of theE. coliisolates in each category, conferring resistance to an extended range of beta-lactam antibiotics. Whole-genome sequencing and comparative genomics of the ExPEC isolates revealed that two of the four isolates from SSTIs, NA633 and NA643, belong to pandemic sequence type ST131, whereas functional characteristics of three of the ExPEC pathotypes revealed that they had equal capabilities to form biofilm and were resistant to human serum. Overall, the isolates from a variety of ExPEC infections demonstrated similar resistomes and virulomes and did not display any disease-specific functional or genetic coordinates.IMPORTANCEInfections caused by extraintestinal pathogenicE. coli(ExPEC) are of global concern as they result in significant costs to health care facilities management. The recent emergence of a multidrug-resistant pandemic clone,Escherichia coliST131, is of primary concern as a global threat. In developing countries, such as India, skin and soft tissue infections (SSTIs) associated withE. coliare marginally addressed. In this study, we employed both genomic analysis and phenotypic assays to determine relationships, if any, among the ExPEC pathotypes. Similarity between antibiotic resistance and virulence profiles was observed, ST131 isolates from SSTIs were reported, and genomic similarities among strains isolated from different disease conditions were detected. This study provides functional molecular infection epidemiology insight into SSTI-associatedE. colicompared with ExPEC pathotypes.


2017 ◽  
Vol 83 (20) ◽  
Author(s):  
Ryan Mercer ◽  
Oanh Nguyen ◽  
Qixing Ou ◽  
Lynn McMullen ◽  
Michael G. Gänzle

ABSTRACT The locus of heat resistance (LHR) is a 15- to 19-kb genomic island conferring exceptional heat resistance to organisms in the family Enterobacteriaceae, including pathogenic strains of Salmonella enterica and Escherichia coli. The complement of LHR-comprising genes that is necessary for heat resistance and the stress-induced or growth-phase-induced expression of LHR-comprising genes are unknown. This study determined the contribution of the seven LHR-comprising genes yfdX1 GI, yfdX2, hdeD GI, orf11, trx GI, kefB, and psiE GI by comparing the heat resistances of E. coli strains harboring plasmid-encoded derivatives of the different LHRs in these genes. (Genes carry a subscript “GI” [genomic island] if an ortholog of the same gene is present in genomes of E. coli.) LHR-encoded heat shock proteins sHSP20, ClpKGI, and sHSPGI are not sufficient for the heat resistance phenotype; YfdX1, YfdX2, and HdeD are necessary to complement the LHR heat shock proteins and to impart a high level of resistance. Deletion of trx GI, kefB, and psiE GI from plasmid-encoded copies of the LHR did not significantly affect heat resistance. The effect of the growth phase and the NaCl concentration on expression from the putative LHR promoter p2 was determined by quantitative reverse transcription-PCR and by a plasmid-encoded p2:GFP promoter fusion. The expression levels of exponential- and stationary-phase E. coli cells were not significantly different, but the addition of 1% NaCl significantly increased LHR expression. Remarkably, LHR expression in E. coli was dependent on a chromosomal copy of evgA. In conclusion, this study improved our understanding of the genes required for exceptional heat resistance in E. coli and factors that increase their expression in food. IMPORTANCE The locus of heat resistance (LHR) is a genomic island conferring exceptional heat resistance to several foodborne pathogens. The exceptional level of heat resistance provided by the LHR questions the control of pathogens by current food processing and preparation techniques. The function of LHR-comprising genes and their regulation, however, remain largely unknown. This study defines a core complement of LHR-encoded proteins that are necessary for heat resistance and demonstrates that regulation of the LHR in E. coli requires a chromosomal copy of the gene encoding EvgA. This study provides insight into the function of a transmissible genomic island that allows otherwise heat-sensitive enteric bacteria, including pathogens, to lead a thermoduric lifestyle and thus contributes to the detection and control of heat-resistant enteric bacteria in food.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Tracy H. Hazen ◽  
David A. Rasko

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


2016 ◽  
Vol 60 (11) ◽  
pp. 6795-6805 ◽  
Author(s):  
Amit Ranjan ◽  
Sabiha Shaik ◽  
Agnismita Mondal ◽  
Nishant Nandanwar ◽  
Arif Hussain ◽  
...  

ABSTRACTThe global dissemination and increasing incidence of carbapenem-resistant, Gram-negative organisms have resulted in acute public health concerns. Here, we present a retrospective multicenter study on molecular characterization of metallo-β-lactamase (MBL)-producing clinicalEscherichia coliisolates recovered from extraintestinal infections in two hospitals in Pune, India. We screened a large sample size of 510E. coliisolates for MBL production wherein we profiled their molecular determinants, antimicrobial resistance phenotypes, functional virulence properties, genomic features, and transmission dynamics. Approximately 8% of these isolates were MBL producers, the majority of which were of the NDM-1 (69%) type, followed by NDM-5 (19%), NDM-4 (5.5%), and NDM-7 (5.5%). MBL producers were resistant to all antibiotics tested except for colistin, fosfomycin, and chloramphenicol, which were effective to various extents. Plasmids were found to be an effective means of dissemination of NDM genes and other resistance traits. All MBL producers adhered to and invaded bladder epithelial (T24) cells and demonstrated significant serum resistance. Genomic analysis of MBL-producingE. coliisolates revealed higher resistance but a moderate virulence gene repertoire. A subset of NDM-1-positiveE. coliisolates was identified as dominant sequence type 101 (ST101) while two strains belonging to ST167 and ST405 harbored NDM-5. A majority of MBL-producingE. colistrains revealed unique genotypes, suggesting that they were clonally unrelated. Overall, the coexistence of virulence and carbapenem resistance in clinicalE. coliisolates is of serious concern. Moreover, the emergence of NDM-1 among the globally dominantE. coliST101 isolates warrants stringent surveillance and control measures.


Author(s):  
Ángel Rodríguez-Villodres ◽  
María Luisa Gil-Marqués ◽  
Rocío Álvarez-Marín ◽  
Rémy A Bonnin ◽  
María Eugenia Pachón-Ibáñez ◽  
...  

Abstract Objectives Escherichia coli is characterized by three resistance patterns to β-lactams/β-lactamase inhibitors (BLs/BLIs): (i) resistance to ampicillin/sulbactam and susceptibility to amoxicillin/clavulanic acid and piperacillin/tazobactam (RSS); (ii) resistance to ampicillin/sulbactam and amoxicillin/clavulanic acid, and susceptibility to piperacillin/tazobactam (RRS); and (iii) resistance to ampicillin/sulbactam, amoxicillin/clavulanic acid and piperacillin/tazobactam (RRR). These resistance patterns are acquired consecutively, indicating a potential risk of developing resistance to piperacillin/tazobactam, but the precise mechanism of this process is not completely understood. Methods Clinical isolates incrementally pressured by piperacillin/tazobactam selection in vitro and in vivo were used. We determined the MIC of piperacillin/tazobactam in the presence and absence of piperacillin/tazobactam pressure. We deciphered the role of the blaTEM genes in the new concept of extended-spectrum resistance to BLs/BLIs (ESRI) using genomic analysis. The activity of β-lactamase was quantified in these isolates. Results We show that piperacillin/tazobactam resistance is induced in E. coli carrying blaTEM genes. This resistance is due to the increase in copy numbers and transcription levels of the blaTEM gene, thus increasing β-lactamase activity and consequently increasing piperacillin/tazobactam MICs. Genome sequencing of two blaTEM-carrying representative isolates showed that piperacillin/tazobactam treatment produced two types of duplications of blaTEM (8 and 60 copies, respectively). In the clinical setting, piperacillin/tazobactam treatment of patients infected by E. coli carrying blaTEM is associated with a risk of therapeutic failure. Conclusions This study describes for the first time the ESRI in E. coli. This new concept is very important in the understanding of the mechanism involved in the acquisition of resistance to BLs/BLIs.


2011 ◽  
Vol 78 (4) ◽  
pp. 1308-1309 ◽  
Author(s):  
Charlotte Valat ◽  
Marisa Haenni ◽  
Estelle Saras ◽  
Frédéric Auvray ◽  
Karine Forest ◽  
...  

ABSTRACTWe report the discovery of a CTX-M-15-producingEscherichia coli(STEC) of serogroup O111:H8, a major serotype responsible for human enterohemorrhagicEscherichia coli(EHEC) infections. In line with the recent CTX-M-15/O104:H4E. colioutbreak, these data may reflect an accelerating spread of resistance to expanded-spectrum cephalosporins within theE. colipopulation, including STEC isolates.


2012 ◽  
Vol 67 (8) ◽  
pp. 2049-2051 ◽  
Author(s):  
J. B. Nielsen ◽  
F. Hansen ◽  
P. Littauer ◽  
K. Schonning ◽  
A. M. Hammerum

2016 ◽  
Vol 48 (6) ◽  
pp. 760-761 ◽  
Author(s):  
Betitera Yanat ◽  
Jesús Machuca ◽  
Radia Dali Yahia ◽  
Abdelaziz Touati ◽  
Álvaro Pascual ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document