scholarly journals Recursive Dictionary Learning Approach Exploiting Between-Channel Correlations for EEG Signal Reconstruction

Author(s):  
Masoud Vazifehkhahi ◽  
Tohid Yousefi Rezaii

In tele-monitoring, wireless body area networks (WBANs), sleep analysis and other applications involving electroencephalogram (EEG) signal, due to the high number of EEG recording channels, long recording time and several repetition of recordings to reach the highest signal-to-noise ratio, the amount of acquired data by the sensors is too large, demanding use of some compression procedure. Compressed sensing can be considered as one of the most effective compression methods in terms of compression ratio, which needs the underlying signal be sparse or have sparse representation in an appropriate domain. EEG signal is not sparse in time domain, therefore, in this paper correlation based weighted recursive least squares dictionary learning algorithm (CBW-RLS) is proposed that uses between-channel correlations to sparsify EEG signals. Due to the low-rank structure of EEG signals, exploiting between-channel correlations increase the sparsity level of the model while reducing the computational cost of dictionary learning procedure. This is done by merely updating the dictionary atoms which are involved in the sparse model of the previous data, reducing the total number of data used at each iteration and speeding up the dictionary learning algorithm. The simulation results show that the proposed method has better performance in terms of both quality of the EEG reconstruction and the computational cost compared to the other methods.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiongliang Xiao ◽  
Yuee Fang

Brain computer interaction (BCI) based on EEG can help patients with limb dyskinesia to carry out daily life and rehabilitation training. However, due to the low signal-to-noise ratio and large individual differences, EEG feature extraction and classification have the problems of low accuracy and efficiency. To solve this problem, this paper proposes a recognition method of motor imagery EEG signal based on deep convolution network. This method firstly aims at the problem of low quality of EEG signal characteristic data, and uses short-time Fourier transform (STFT) and continuous Morlet wavelet transform (CMWT) to preprocess the collected experimental data sets based on time series characteristics. So as to obtain EEG signals that are distinct and have time-frequency characteristics. And based on the improved CNN network model to efficiently recognize EEG signals, to achieve high-quality EEG feature extraction and classification. Further improve the quality of EEG signal feature acquisition, and ensure the high accuracy and precision of EEG signal recognition. Finally, the proposed method is validated based on the BCI competiton dataset and laboratory measured data. Experimental results show that the accuracy of this method for EEG signal recognition is 0.9324, the precision is 0.9653, and the AUC is 0.9464. It shows good practicality and applicability.


Author(s):  
Ru Yang ◽  
Zhentao Qin ◽  
Xiangyu Zhao

With the emerging technology of remote sensing, a huge amount of remote sensing data is collected and stored in the remote sensin02222g platform, and the transmission and processing of data on the platform is extremely wasteful. It is essential to incorporate the speedy remote sensing processing services in an integrated cloud computing architecture. In order to improve the denoising ability of remote sensing image, a new structured dictionary-based method for multispectral image denoising based on cluster is proposed. This method incorporates both the locality of spatial and the correlation across spectrum of multispectral image. Remote sensing image is divided into different groups by clustering, and sparse representation coefficients of spatial and spectral and dictionary is obtained according to the dictionary learning algorithm. After threshold processing, the similar blocks are averaged and realized with multispectral remote sensing image denoising. The algorithm is applied to denoise the noisy remote sensing image of Maoergai area in the upper Minjiang which contain typical vegetation and soil is chosen as study area, simulation results show that higher peak-signal to noise ratio can be obtained as compared to other recent image denoising methods.


2020 ◽  
Vol 222 (3) ◽  
pp. 1717-1727 ◽  
Author(s):  
Yangkang Chen

SUMMARY The K-SVD algorithm has been successfully utilized for adaptively learning the sparse dictionary in 2-D seismic denoising. Because of the high computational cost of many singular value decompositions (SVDs) in the K-SVD algorithm, it is not applicable in practical situations, especially in 3-D or 5-D problems. In this paper, I extend the dictionary learning based denoising approach from 2-D to 3-D. To address the computational efficiency problem in K-SVD, I propose a fast dictionary learning approach based on the sequential generalized K-means (SGK) algorithm for denoising multidimensional seismic data. The SGK algorithm updates each dictionary atom by taking an arithmetic average of several training signals instead of calculating an SVD as used in K-SVD algorithm. I summarize the sparse dictionary learning algorithm using K-SVD, and introduce SGK algorithm together with its detailed mathematical implications. 3-D synthetic, 2-D and 3-D field data examples are used to demonstrate the performance of both K-SVD and SGK algorithms. It has been shown that SGK algorithm can significantly increase the computational efficiency while only slightly degrading the denoising performance.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142199226
Author(s):  
Jannatul Ferdous ◽  
Sujan Ali ◽  
Ekramul Hamid ◽  
Khademul Islam Molla

This article presents a hybrid wavelet-based algorithm to suppress the ocular artifacts from electroencephalography (EEG) signals. The hybrid wavelet transform (HWT) method is designed by the combination of discrete wavelet decomposition and wavelet packet transform. The artifact suppression is performed by the selection of sub-bands obtained by HWT. Fractional Gaussian noise (fGn) is used as the reference signal to select the sub-bands containing the artifacts. The multichannel EEG signal is decomposed HWT into a finite set of sub-bands. The energies of the sub-bands are compared to that of the fGn to the desired sub-band signals. The EEG signal is reconstructed by the selected sub-bands consisting of EEG. The experiments are conducted for both simulated and real EEG signals to study the performance of the proposed algorithm. The results are compared with recently developed algorithms of artifact suppression. It is found that the proposed method performs better than the methods compared in terms of performance metrics and computational cost.


The Electroencephalogram (EEG) is the standard technique for investigating the brain’s electrical activity in different psychological and pathological states. Analysis of Electroencephalogram (EEG) signal is a challenging task by reason of the presence of different artifacts such as Ocular Artifacts (OA) and Electromyogram. Normally EEG signals falls in the frequency range of DC to 60 Hz and amplitude of 1-5 µv. Ocular artifacts do have the similar statistical properties of EEG signals, often interfere with EEG signal, thereby making the analysis of EEG signals more complex. In this research paper, removal of artifacts was done using wavelets (matlab coding) as well as using SIMULINK DWT and IDWT blocks and estimated the SNR. In the next stage the output of IDWT block was taken as input to Burg model and Yule walker model to estimate the power spectral density of EEG signal by setting the various parameters of the blocks. The implementation of denoising of EEG signal using SIMULINK DWT and IDWT blocks and estimation of power spectral density of denoised EEG signal using Burg model and Yule walker model was explained in detail in the paper under the methodology heading. In this research paper, the collected EEG signal is normalized and later linearly mixed with the normalized EOG signal resulting in a noisy EEG signal. This noisy EEG signal is decomposed to 4 levels by using different wavelets. This decomposition of EEG signals yields approximate and detail coefficients. Later different thresholding techniques were applied to detail coefficients and estimated the Signal to Noise Ratio of it and estimated the power spectral density of denoised EEG signal obtained from dB4 wavelet as it is providing better SNR than other wavelets mentioned in the results.


Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Guang Li ◽  
Zhushi He ◽  
Jing Tian Tang ◽  
Juzhi Deng ◽  
Xiaoqiong Liu ◽  
...  

Controlled-source electromagnetic (CSEM) data recorded in industrialized areas are inevitably contaminated by strong cultural noise. Traditional noise attenuation methods are often ineffective for intricate aperiodic noise. To address the problem mentioned above, we propose a novel noise isolation method based on fast Fourier transform (FFT), complementary ensemble empirical mode decomposition (CEEMD) and shift-invariant sparse coding (SISC, an unsupervised machine learning algorithm under a data-driven framework). First, large powerline noise is accurately subtracted in the frequency domain. Then, the CEEMD based algorithm is used to correct the large baseline drift. Finally, taking advantage of the sparsity of periodic signals, SISC is applied to autonomously learn a feature atom (the useful signal with a length of one period) from the detrended signal and recover CSEM signal with high accuracy. We demonstrate the performance of the SISC by comparing with other three promising signal processing methods, including the mathematic morphology filtering (MMF), soft-threshold wavelet filtering, and K-SVD (another dictionary learning method) sparse decomposition. Experimental results illustrate that SISC provides the best performance. Robustness test results show that SISC can increase the signal-to-noise ratio (SNR) of noisy signal from 0 dB to more than 15 dB. Case studies of synthetic and real data collected in the Chinese Provinces Sichuan and Yunnan show that the proposed method is capable of effectively recovering the useful signal from the observed data contaminated with different kinds of strong ambient noise. The curves of U/I and apparent resistivity after applying the proposed method improved greatly. Moreover, the proposed method performs better than the robust estimation method based on correlation analysis.


Sign in / Sign up

Export Citation Format

Share Document