scholarly journals Learning to Incorporate Structure Knowledge for Image Inpainting

Author(s):  
Jie Yang ◽  
Zhiquan Qi ◽  
Yong Shi

This paper develops a multi-task learning framework that attempts to incorporate the image structure knowledge to assist image inpainting, which is not well explored in previous works. The primary idea is to train a shared generator to simultaneously complete the corrupted image and corresponding structures --- edge and gradient, thus implicitly encouraging the generator to exploit relevant structure knowledge while inpainting. In the meantime, we also introduce a structure embedding scheme to explicitly embed the learned structure features into the inpainting process, thus to provide possible preconditions for image completion. Specifically, a novel pyramid structure loss is proposed to supervise structure learning and embedding. Moreover, an attention mechanism is developed to further exploit the recurrent structures and patterns in the image to refine the generated structures and contents. Through multi-task learning, structure embedding besides with attention, our framework takes advantage of the structure knowledge and outperforms several state-of-the-art methods on benchmark datasets quantitatively and qualitatively.

2020 ◽  
Vol 34 (07) ◽  
pp. 12605-12612 ◽  
Author(s):  
Jie Yang ◽  
Zhiquan Qi ◽  
Yong Shi

This paper develops a multi-task learning framework that attempts to incorporate the image structure knowledge to assist image inpainting, which is not well explored in previous works. The primary idea is to train a shared generator to simultaneously complete the corrupted image and corresponding structures — edge and gradient, thus implicitly encouraging the generator to exploit relevant structure knowledge while inpainting. In the meantime, we also introduce a structure embedding scheme to explicitly embed the learned structure features into the inpainting process, thus to provide possible preconditions for image completion. Specifically, a novel pyramid structure loss is proposed to supervise structure learning and embedding. Moreover, an attention mechanism is developed to further exploit the recurrent structures and patterns in the image to refine the generated structures and contents. Through multi-task learning, structure embedding besides with attention, our framework takes advantage of the structure knowledge and outperforms several state-of-the-art methods on benchmark datasets quantitatively and qualitatively.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6780
Author(s):  
Zhitong Lai ◽  
Rui Tian ◽  
Zhiguo Wu ◽  
Nannan Ding ◽  
Linjian Sun ◽  
...  

Pyramid architecture is a useful strategy to fuse multi-scale features in deep monocular depth estimation approaches. However, most pyramid networks fuse features only within the adjacent stages in a pyramid structure. To take full advantage of the pyramid structure, inspired by the success of DenseNet, this paper presents DCPNet, a densely connected pyramid network that fuses multi-scale features from multiple stages of the pyramid structure. DCPNet not only performs feature fusion between the adjacent stages, but also non-adjacent stages. To fuse these features, we design a simple and effective dense connection module (DCM). In addition, we offer a new consideration of the common upscale operation in our approach. We believe DCPNet offers a more efficient way to fuse features from multiple scales in a pyramid-like network. We perform extensive experiments using both outdoor and indoor benchmark datasets (i.e., the KITTI and the NYU Depth V2 datasets) and DCPNet achieves the state-of-the-art results.


2020 ◽  
Vol 34 (04) ◽  
pp. 5867-5874
Author(s):  
Gan Sun ◽  
Yang Cong ◽  
Qianqian Wang ◽  
Jun Li ◽  
Yun Fu

In the past decades, spectral clustering (SC) has become one of the most effective clustering algorithms. However, most previous studies focus on spectral clustering tasks with a fixed task set, which cannot incorporate with a new spectral clustering task without accessing to previously learned tasks. In this paper, we aim to explore the problem of spectral clustering in a lifelong machine learning framework, i.e., Lifelong Spectral Clustering (L2SC). Its goal is to efficiently learn a model for a new spectral clustering task by selectively transferring previously accumulated experience from knowledge library. Specifically, the knowledge library of L2SC contains two components: 1) orthogonal basis library: capturing latent cluster centers among the clusters in each pair of tasks; 2) feature embedding library: embedding the feature manifold information shared among multiple related tasks. As a new spectral clustering task arrives, L2SC firstly transfers knowledge from both basis library and feature library to obtain encoding matrix, and further redefines the library base over time to maximize performance across all the clustering tasks. Meanwhile, a general online update formulation is derived to alternatively update the basis library and feature library. Finally, the empirical experiments on several real-world benchmark datasets demonstrate that our L2SC model can effectively improve the clustering performance when comparing with other state-of-the-art spectral clustering algorithms.


Author(s):  
Xu Chu ◽  
Yang Lin ◽  
Yasha Wang ◽  
Leye Wang ◽  
Jiangtao Wang ◽  
...  

Drug-drug interactions (DDIs) are a major cause of preventable hospitalizations and deaths. Recently, researchers in the AI community try to improve DDI prediction in two directions, incorporating multiple drug features to better model the pharmacodynamics and adopting multi-task learning to exploit associations among DDI types. However, these two directions are challenging to reconcile due to the sparse nature of the DDI labels which inflates the risk of overfitting of multi-task learning models when incorporating multiple drug features. In this paper, we propose a multi-task semi-supervised learning framework MLRDA for DDI prediction. MLRDA effectively exploits information that is beneficial for DDI prediction in unlabeled drug data by leveraging a novel unsupervised disentangling loss CuXCov. The CuXCov loss cooperates with the classification loss to disentangle the DDI prediction relevant part from the irrelevant part in a representation learnt by an autoencoder, which helps to ease the difficulty in mining useful information for DDI prediction in both labeled and unlabeled drug data. Moreover, MLRDA adopts a multi-task learning framework to exploit associations among DDI types. Experimental results on real-world datasets demonstrate that MLRDA significantly outperforms state-of-the-art DDI prediction methods by up to 10.3% in AUPR.


Author(s):  
Ang Li ◽  
Jianzhong Qi ◽  
Rui Zhang ◽  
Xingjun Ma ◽  
Kotagiri Ramamohanarao

Image inpainting aims at restoring missing regions of corrupted images, which has many applications such as image restoration and object removal. However, current GAN-based generative inpainting models do not explicitly exploit the structural or textural consistency between restored contents and their surrounding contexts. To address this limitation, we propose to enforce the alignment (or closeness) between the local data submanifolds (subspaces) around restored images and those around the original (uncorrupted) images during the learning process of GAN-based inpainting models. We exploit Local Intrinsic Dimensionality (LID) to measure, in deep feature space, the alignment between data submanifolds learned by a GAN model and those of the original data, from a perspective of both images (denoted as iLID) and local patches (denoted as pLID) of images. We then apply iLID and pLID as regularizations for GAN-based inpainting models to encourage two different levels of submanifold alignments: 1) an image-level alignment to improve structural consistency, and 2) a patch-level alignment to improve textural details. Experimental results on four benchmark datasets show that our proposed model can generate more accurate results than state-of-the-art models.


Author(s):  
Fuli Luo ◽  
Peng Li ◽  
Jie Zhou ◽  
Pengcheng Yang ◽  
Baobao Chang ◽  
...  

Unsupervised text style transfer aims to transfer the underlying style of text but keep its main content unchanged without parallel data. Most existing methods typically follow two steps: first separating the content from the original style, and then fusing the content with the desired style. However, the separation in the first step is challenging because the content and style interact in subtle ways in natural language. Therefore, in this paper, we propose a dual reinforcement learning framework to directly transfer the style of the text via a one-step mapping model, without any separation of content and style. Specifically, we consider the learning of the source-to-target and target-to-source mappings as a dual task, and two rewards are designed based on such a dual structure to reflect the style accuracy and content preservation, respectively. In this way, the two one-step mapping models can be trained via reinforcement learning, without any use of parallel data. Automatic evaluations show that our model outperforms the state-of-the-art systems by a large margin, especially with more than 10 BLEU points improvement averaged on two benchmark datasets. Human evaluations also validate the effectiveness of our model in terms of style accuracy, content preservation and fluency. Our code and data, including outputs of all baselines and our model are available at https://github.com/luofuli/DualRL.


Author(s):  
Pei Yang ◽  
Qi Tan ◽  
Jieping Ye ◽  
Hanghang Tong ◽  
Jingrui He

In this paper, we propose a deep multi-Task learning model based on Adversarial-and-COoperative nets (TACO). The goal is to use an adversarial-and-cooperative strategy to decouple the task-common and task-specific knowledge, facilitating the fine-grained knowledge sharing among tasks. TACO accommodates multiple game players, i.e., feature extractors, domain discriminator, and tri-classifiers. They play the MinMax games adversarially and cooperatively to distill the task-common and task-specific features, while respecting their discriminative structures. Moreover, it adopts a divide-and-combine strategy to leverage the decoupled multi-view information to further improve the generalization performance of the model. The experimental results show that our proposed method significantly outperforms the state-of-the-art algorithms on the benchmark datasets in both multi-task learning and semi-supervised domain adaptation scenarios.


2020 ◽  
Vol 34 (05) ◽  
pp. 9507-9514 ◽  
Author(s):  
Daojian Zeng ◽  
Haoran Zhang ◽  
Qianying Liu

Joint extraction of entities and relations has received significant attention due to its potential of providing higher performance for both tasks. Among existing methods, CopyRE is effective and novel, which uses a sequence-to-sequence framework and copy mechanism to directly generate the relation triplets. However, it suffers from two fatal problems. The model is extremely weak at differing the head and tail entity, resulting in inaccurate entity extraction. It also cannot predict multi-token entities (e.g. Steven Jobs). To address these problems, we give a detailed analysis of the reasons behind the inaccurate entity extraction problem, and then propose a simple but extremely effective model structure to solve this problem. In addition, we propose a multi-task learning framework equipped with copy mechanism, called CopyMTL, to allow the model to predict multi-token entities. Experiments reveal the problems of CopyRE and show that our model achieves significant improvement over the current state-of-the-art method by 9% in NYT and 16% in WebNLG (F1 score). Our code is available at https://github.com/WindChimeRan/CopyMTL


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Yang ◽  
Xiucai Ye ◽  
Xuehong Li ◽  
Lesong Wei

MotivationDNA N4-methylcytosine (4mC) and N6-methyladenine (6mA) are two important DNA modifications and play crucial roles in a variety of biological processes. Accurate identification of the modifications is essential to better understand their biological functions and mechanisms. However, existing methods to identify 4mA or 6mC sites are all single tasks, which demonstrates that they can identify only a certain modification in one species. Therefore, it is desirable to develop a novel computational method to identify the modification sites in multiple species simultaneously.ResultsIn this study, we proposed a computational method, called iDNA-MT, to identify 4mC sites and 6mA sites in multiple species, respectively. The proposed iDNA-MT mainly employed multi-task learning coupled with the bidirectional gated recurrent units (BGRU) to capture the sharing information among different species directly from DNA primary sequences. Experimental comparative results on two benchmark datasets, containing different species respectively, show that either for identifying 4mA or for 6mC site in multiple species, the proposed iDNA-MT outperforms other state-of-the-art single-task methods. The promising results have demonstrated that iDNA-MT has great potential to be a powerful and practically useful tool to accurately identify DNA modifications.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Min-Ling Zhang ◽  
Jun-Peng Fang ◽  
Yi-Bo Wang

In multi-label classification, the task is to induce predictive models which can assign a set of relevant labels for the unseen instance. The strategy of label-specific features has been widely employed in learning from multi-label examples, where the classification model for predicting the relevancy of each class label is induced based on its tailored features rather than the original features. Existing approaches work by generating a group of tailored features for each class label independently, where label correlations are not fully considered in the label-specific features generation process. In this article, we extend existing strategy by proposing a simple yet effective approach based on BiLabel-specific features. Specifically, a group of tailored features is generated for a pair of class labels with heuristic prototype selection and embedding. Thereafter, predictions of classifiers induced by BiLabel-specific features are ensembled to determine the relevancy of each class label for unseen instance. To thoroughly evaluate the BiLabel-specific features strategy, extensive experiments are conducted over a total of 35 benchmark datasets. Comparative studies against state-of-the-art label-specific features techniques clearly validate the superiority of utilizing BiLabel-specific features to yield stronger generalization performance for multi-label classification.


Sign in / Sign up

Export Citation Format

Share Document