scholarly journals Effects of Transverse Groynes on Meso-Habitat Suitability for Native Fish Species on a Regulated By-Passed Large River

Author(s):  
Valentin Chardon ◽  
Laurent Schmitt ◽  
Hervé Piégay ◽  
Jean-Nicolas Beisel ◽  
Cybill Staentzel ◽  
...  

River regulations ultimately degrade fluvial forms and morphodynamics and simplify riparian and aquatic habitats. For several decades, river restoration actions have been performed to recover geomorphic processes and diversify these habitats to enhance both river biodiversity and ecosystem services. The objective of this study is to provide quantitative feedback on the experimental restoration of a large regulated and by-passed river (the Upper Rhine downstream of the Kembs Dam, France/Germany). This restoration consisted of the construction of two transverse groynes and the removal of bank protection. A monitoring framework composed of topo-bathymetric surveys as well as flow velocity and grain size measurements was established to assess the channel morphodynamic responses and evaluate their effects on habitat suitability for five native fish species using habitat models. A riverscape approach was used to evaluate the landscape changes in terms of both the configuration and the composition, which cannot be considered with classic approaches (e.g., WUA). Our results show that the two transverse groynes and, to a lesser extent, bank erosion, which was locally enhanced by the two groynes, increased habitat diversity due to the creation of new macroforms (e.g., pools and mid-bars) and fining of the bed grain size. Using a riverscape approach, our findings highlight that the restoration improved lentic fish habitats (eel and juvenile nase species) due to slowing of the local current and the deposition of fine sediments downstream of both groynes. As a consequence, the restoration improved the habitat suitability of the studied reach for more fish species compared with the pre-restoration conditions. This study also demonstrates that the salmon habitats downstream of the restored reach were improved due to fining of the bed grain size. This finding highlights that for restorations aimed at fish habitats, the grain size conditions must be taken into consideration along with the flow conditions. Furthermore, the implementation of groynes, while not a panacea, can be a strategy for improving fish habitats on highly regulated rivers, but only when more functional and natural options are impossible due to major constraints.

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 987 ◽  
Author(s):  
Valentin Chardon ◽  
Laurent Schmitt ◽  
Hervé Piégay ◽  
Jean-Nicolas Beisel ◽  
Cybill Staentzel ◽  
...  

River regulations ultimately degrade fluvial forms and morphodynamics and simplify riparian and aquatic habitats. For several decades, river restoration actions have been performed to recover geomorphic processes and diversify these habitats to enhance both river biodiversity and ecosystem services. The objective of this study is to provide quantitative feedback on the experimental restoration of a large regulated and by-passed river (the Upper Rhine downstream of the Kembs Dam, France/Germany). This restoration consisted of the construction of two transverse groynes and the removal of bank protection. A monitoring framework composed of topo-bathymetric surveys as well as flow velocity and grain size measurements was established to assess the channel morphodynamic responses and evaluate their effects on habitat suitability for five native fish species using habitat models. A riverscape approach was used to evaluate the landscape changes in terms of both the configuration and the composition, which cannot be considered with classic approaches (e.g., Weighted Usable Area). Our results show that the two transverse groynes and, to a lesser extent, bank erosion, which was locally enhanced by the two groynes, increased habitat diversity due to the creation of new macroforms (e.g., pools and mid-bars) and fining of the bed grain size. Using a riverscape approach, our findings highlight that the restoration improved eel and juvenile nase species due to slowing down of the current and the deposition of fine sediments downstream of both groynes. As a consequence, the restoration improved the habitat suitability of the studied reach for more fish species compared with the pre-restoration conditions. This study also demonstrates that the salmon habitats downstream of the restored reach were improved due to fining of the bed grain size. This finding highlights that, for restorations aimed at fish habitats, the grain size conditions must be taken into consideration along with the flow conditions. Furthermore, the implementation of groynes, while not a panacea in terms of functional restoration, can be a strategy for improving fish habitats on highly regulated rivers, but only when more functional and natural options are impossible due to major constraints.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Głowacki ◽  
Andrzej Kruk ◽  
Tadeusz Penczak

AbstractThe knowledge of biotic and abiotic drivers that put non-native invasive fishes at a disadvantage to native ones is necessary for suppressing invasions, but the knowledge is scarce, particularly when abiotic changes are fast. In this study, we increased this knowledge by an analysis of the biomass of most harmful Prussian carp Carassius gibelio in a river reviving from biological degradation. The species' invasion followed by the invasion's reversal occurred over only two decades and were documented by frequent monitoring of fish biomass and water quality. An initial moderate improvement in water quality was an environmental filter that enabled Prussian carp’s invasion but prevented the expansion of other species. A later substantial improvement stimulated native species’ colonization of the river, and made one rheophil, ide Leuciscus idus, a significant Prussian carp’s replacer. The redundancy analysis (RDA) of the dependence of changes in the biomass of fish species on water quality factors indicated that Prussian carp and ide responded in a significantly opposite way to changes in water quality in the river over the study period. However, the dependence of Prussian carp biomass on ide biomass, as indicated by regression analysis and analysis of species traits, suggests that the ecomorphological similarity of both species might have produced interference competition that contributed to Prussian carp’s decline.


2014 ◽  
Vol 44 (8) ◽  
pp. 1448-1451 ◽  
Author(s):  
Rafael Ernesto Balen ◽  
Patrick Nereu Tetu ◽  
Robie Allan Bombardelli ◽  
Paulo Cesar Pozza ◽  
Fábio Meurer

The increase in global biodiesel production is originating a glycerol surplus, which has no defined destination. An alternative to overcome this problem is its use as energy source in animal feeding. In Brazil, Pacu (Piaractus mesopotamicus) is one of the most farmed native fish species, whereas Silver catfish (Rhamdia quelen) is suitable for production in subtropical region. Considering little knowledge about crude glycerol utilization in feeds for Neotropical fish species, it was evaluated the apparent digestibility coefficients (ADCs) for energy of crude glycerol for P. mesopotamicus and R. quelen. The digestibility and digestible energy content of crude glycerol can be considered excellent even when compared to energy of common ingredients such as maize and wheat, presenting 0.97 and 0.89 of energy ADCs, and 15.2 and 13.95MJ kg-1 of digestible energy for Pacu and Silver catfish, respectively. In conclusion, crude glycerol is an energetic ingredient with good potential in Brazilian native fish diets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabella Schalko ◽  
Ellen Wohl ◽  
Heidi M. Nepf

AbstractWood is an integral part of a river ecosystem and the number of restoration projects using log placements is increasing. Physical model tests were used to explore how the wood position and submergence level (discharge) affect wake structure, and hence the resulting habitat. We observed a von-Kármán vortex street (VS) for emergent logs placed at the channel center, while no VS formed for submerged logs, because the flow entering the wake from above the log (sweeping flow) inhibited VS formation. As a result, emergent logs placed at the channel center resulted in ten times higher turbulent kinetic energy compared to submerged logs. In addition, both spatial variation in time-mean velocity and turbulence level increased with increasing log length and decreasing submergence level. Submerged logs and logs placed at the channel side created a greater velocity deficit and a longer recirculation zone, both of which can increase the residence time in the wake and deposition of organic matter and nutrients. The results demonstrate that variation in log size and degree of submergence can be used as a tool to vary habitat suitability for different fish preferences. To maximize habitat diversity in rivers, we suggest a diverse large wood placement.


2017 ◽  
Author(s):  
Guido Benassai ◽  
Pietro Aucelli ◽  
Giorgio Budillon ◽  
Massimo De Stefano ◽  
Diana Di Luccio ◽  
...  

Abstract. The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including UAV observation, allowed to detect the presence of rip currents and rip channels at the mouth of Sele river, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different bathymetric surveys, a detailed sediment 5 analysis and a set of high-resolution wave numerical simulations, completed with satellite and UAV observation. The grain size trend analysis and the numerical simulations allowed to identify the rip current system, forced by topographically constrained channels incised on the seabed, which were detected by high resolution bathymetric surveys. The study evidenced that on the coastal area of the Sele mouth grain-size trends are controlled by the contribution of fine sediments, which exhibit suspended transport pathways due to rip currents and longshore currents. The results obtained were confirmed by satellite and UAV 10 observations in different years.


Author(s):  
Tatia Kuljanishvili ◽  
Levan Mumladze ◽  
Bella Japoshvili ◽  
Namig Mustafayev ◽  
Shaig Ibrahimov ◽  
...  

The South Caucasus (SC) region is recognized for its high biological diversity and various endemic animal taxa. The area has experienced many fish introductions over the years, but the overall information about non-native fishes in the three SC countries, Armenia, Azerbaijan, and Georgia did not exist. Although these three countries belong to the Kura River drainage, Caspian Sea basin (only the western half of Georgia drains into the Black Sea), the legislative framework for each country regarding introduction of non-native fish species and their treatment is different and poorly developed. The goal of the present study was to make an initial inventory of non-native fish species in the three SC countries, and summarize the existing knowledge as a basis for future risk assessment models and formulation of regional management policies. Here, we present a unified list of 27 non-native species recorded in the wild in Armenia, Azerbaijan, and Georgia. Among these 27 species, eight were translocated from the Black Sea basin to the Caspian Sea basin. Out of these 27 non-native fishes, 15 species have become established (three of them being considered invasive) and six fish species could not survive in the wild.


Sign in / Sign up

Export Citation Format

Share Document