scholarly journals Image-based Restoration of the Concrete Void System Using 2D-to-3D Unfolding Technique

Author(s):  
Yu Song ◽  
Chuanyue Shen ◽  
Robbie Damiani ◽  
David Lange

Hardened air void analysis provides essential information of concrete freeze-thaw durability based on the size and spacing of air voids in the material. As the physical freeze-thaw experiment is time-consuming and costly, the characteristics of concrete air voids are often deemed as a proxy of the freeze-thaw performance. This analysis is typically done by measuring the 2D air void intersections on polished samples, but the current interpretation of the 2D void characters does not accurately represent the actual void structure in 3D. To solve this problem, a 2D-to-3D unfolding technique has been proposed in the field of stereology. However, the unfolding analysis is known to be sensitive to several factors, such as void population and size along with a binning scheme, where improper unfolding can considerably bias the prediction of the actual concrete void system. This study investigates the optimal strategy of conducting the unfolding analysis for concrete. The investigation is carried out on both idealized void systems to interrogate the influence of the critical factors individually, and real concrete samples with varying levels of air entrainment to assess the concrete-specific impacts. The concrete void system is studied based on a stereological model emulating the intersected 3D air voids on the surface of polished concrete. The results highlight that, for unfolding concrete voids, logarithmic binning scheme is far more accurate to linear binning. The low unfolding error of the concrete samples indicates that the proposed methodology enables an accurate restoration of 3D void size distribution.

1990 ◽  
Vol 17 (1) ◽  
pp. 19-27 ◽  
Author(s):  
B. W. Langan ◽  
R. C. Joshi ◽  
M. A. Ward

Results are presented from an investigation on the compressive strength and durability of concretes containing substitute materials at a 50% replacement level (by mass) of Portland cement. Seven fly ashes (sub-bituminous, bituminous, and lignitic), together with limestone and an inert material (silica flour), were used as replacement materials. Durability studies included freeze–thaw testing (ASTM C666A), scaling resistance (ASTM C672), and abrasion resistance (ASTM C944). The air void system was assessed using the modified point count method of ASTM C457. The results indicate that although concretes with a 50% replacement level of cementitious material did not perform as well as the control concretes with no replacement, such concretes were able to meet minimum durability requirements. As anticipated, air-entrainment is the overriding factor that allows concrete to meet freeze–thaw durability requirements. In the context of this study, compressive strength does not appear to be a significant factor in freeze–thaw durability. Results indicated that concretes with compressive strengths of less than 10 MPa will still pass the freeze–thaw test, provided an adequate air void system is in place. Abrasion resistance tends to increase with compressive strength but not in all the cases. Key words: concrete, fly ash, compressive strength, durability, mineral admixtures.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 154
Author(s):  
Marija Krstic ◽  
Julio F. Davalos ◽  
Emanuele Rossi ◽  
Stefan C. Figueiredo ◽  
Oguzhan Copuroglu

Recent studies have shown promising potential for using Glass Pozzolan (GP) as an alternative supplementary cementitious material (SCM) due to the scarcity of fly ash and slag in the United States. However, comprehensive studies on the freeze–thaw (FT) resistance and air void system of mixtures containing GP are lacking. Therefore, this study aimed to evaluate GP’s effect on FT resistance and characterize mixtures with different GP contents, both macro- and microscopically. In this study, six concrete mixes were considered: Three mixes with 20%, 30% and 40% GP as cement replacements and two other comparable mixes with 30% fly ash and 40% slag, as well as a mix with 100% Ordinary Portland cement (OPC) as a reference. Concrete samples were prepared, cured and tested according to the ASTM standards for accelerated FT resistance for 1000 cycles and corresponding dynamic modulus of elasticity (Ed). All the samples showed minimal deterioration and scaling and high F/T resistance with a durability factor of over 90%. The relationships among FT resistance parameters, air-pressured method measurements of fresh concretes and air void analysis parameters of hardened concretes were examined in this study. X-ray micro-tomography (micro-CT scan) was used to evaluate micro-cracks development after 1000 freeze–thaw cycles and to determine spatial parameters of air voids in the concretes. Pore structure properties obtained from mercury intrusion porosimetry (MIP) and N2 adsorption method showed refined pore structure for higher cement replacement with GP, indicating more gel formation (C-S-H) which was verified by thermogravimetric analysis (TGA).


Author(s):  
M. Lessard ◽  
M. Baalbaki ◽  
P.-C. Aïtcin

The stability of the air content of concrete during pumping has been the subject of a number of recent investigations. Because increasing volumes of concrete are placed with the aid of pumps and the durability of such concrete to freezing and thawing (ASTM C666) as well as the scaling resistance (ASTM C672) preoccupy engineers, a study concerning the stability of the air-void system of a concrete with 45 to 50 MPa compressive strength was carried out. The slump of the three tested concretes ranged between 85 and 115 mm. Three pumping setups were studied. In the first, the concrete was pumped horizontally; in the second the concrete was pumped upward and then downward. In the third, the vertical setup was used but a reduced section was placed at the end of the pump line, and the concrete was allowed to free fall a short distance. For each pump setup, the concrete was sampled before being placed in the pump and after leaving the pump. The results clearly show that when the concrete is pumped horizontally, the spacing factor (L) and the specific surface of the air-void system are barely altered. On the other hand, after pumping the concrete vertically without a reduced end section, it was impossible to obtain an L less than 230 μm, the maximum spacing factor allowed by Canadian standards (CSA A23.1) to ensure good frost durability. Furthermore, the specific surface of the air bubbles fell to 20 mm−1, which is inferior to the 25-mm−1 value recommended in Canadian standards. By placing a reduced section at the end of the vertical pump line, it was possible to enhance the air-void system but that procedure still fell short of ensuring a system that satisfies the air-void system recommended by Canadian standards to ensure proper frost durability. Although the pumped concrete mixtures did not always satisfy the requirements of CSA A23.1 regarding air-void systems, they satisfied the requirements of ASTM C666 (Procedure A) for resistance to freeze-thaw cycles. Freeze-thaw resistance in the presence of deicing salts was evaluated according to ASTM C672. After 50 frost cycles, all but one concrete exhibited mass losses that were lower than the maximum permissible limit of 0.50 kg/m2 required by BNQ 2621-900, the standard currently enforced in the province of Quebec. Placing a reduced section at the end of the pump line creates a light counterpressure in the descending section of the pump line, which allows the conservation of an acceptable air-void system. Considering the appreciable improvement in the preservation of air-void characteristics when a reduced section was placed at the end of the pump line, it was decided to proceed with further experimental work using four 90-degree elbows placed at the end of the vertically hanging pump line.


2013 ◽  
Vol 857 ◽  
pp. 110-115 ◽  
Author(s):  
Xiu Hua Zheng ◽  
Yong Ge ◽  
Jie Yuan

Air-entraining agent turely is one of the necessary compositions of the high durability concrete. The influence of air content and vibration time on the frost resistance of concrete was researched, and air void characteristics of hardened concrete was analysed. The results showed that the air contents could reduce the compressive strengthof hardened concrete excessively, but it made the spacing factor reduce obviously and significantly improve the frost resistance of concrete.The air voids with different structure in concrete were realized by vibration time. It was found that the air void structure and the frost resistance properties were influenced by the vibration time largely. The optimized vibration time is 30s, the appropriate vibration time is 20s~30s, no more than 35s.


Author(s):  
Aref Shafiei Dastgerdi ◽  
Kyle Riding ◽  
Robert J. Peterman ◽  
B. Terry Beck

As an important element in track, pre-stressed concrete railroad ties in the high-speed rail industry must meet the safety and performance specifications of high-speed trains. Systematic destructive and non-destructive evaluation of existing concrete ties can lead to a better understanding of the effect of prestressed concrete tie material design on performance and failure within their service life. It has been evident that environmental and climate conditions also have a significant impact on concrete railroad ties, causing various forms of deterioration such as abrasion and freeze-thaw damage. Understanding of the material characteristics that cause failure in different types of existing concrete railroad ties taken from different places is the main focus of this paper. Observing the current status and damages of railroad ties taken from track might give a correlation between the material characteristic and type of distress and cracking seen. Although it has been seen by previous works that effective factors such as air void system and material composition directly affect the performance of concrete ties such as freeze-thaw, material evaluation of existing ties after service life has not been addressed in previous publications. In this research, the authors have investigated the material characteristic such as aggregate and air-void system of existing pre-stressed concrete railroad ties taken from track. However, compressive and splitting tensile strength and fractured surface of samples cored from the ties were acquired. In order to obtain the strength of concrete materials of existing ties, six samples were cored from six different types of ties taken from tracks across the U.S., according to ASTM C42-16, and tested using ASTM C39 and ASTM C496 methods. However, the concrete air-void system (ASTM C457) was measured on saw-cut samples extracted from the ties to evaluate the influence air content and distribution on mechanical properties of the ties. Regarding the history and service life condition of the ties, it seems that material properties of the ties effectively alter the performance of the ties. Aggregate sources used at each location may have different properties such as texture, angularity, and mineralogy, contributing either propagation or resistance in splitting cracking in concrete. Furthermore, the polished surface of samples extracted from the ties show the uniformity and air void system in some ties which demonstrate their superiority in terms of resistance to freeze-thaw damage. Considering the results of this research, comprehensive evaluation of material characteristics might give a better view of existing concrete railroad ties situation, providing a worthwhile background for future tie design considerations.


2020 ◽  
Vol 12 (7) ◽  
pp. 2966 ◽  
Author(s):  
Chao Chai ◽  
Yong-Chun Cheng ◽  
Yuwei Zhang ◽  
Yu Chen ◽  
Bing Zhu

This paper focuses on the freeze-thaw cycles (F-T cycles) resistance of porous asphalt mixture (PAM) with different air voids in order to explore the gradation of the PAM suitable for seasonal freezing regions. Three sets of PAMs with 18%, 21%, and 25% air voids were designed. After 0–20 F-T cycles, the effects of F-T cycles on the performance degradation of three groups of PAMs were studied by performing a low-temperature splitting test with acoustic emission technology, a normal temperature splitting test, a compression test, a Cantabro particle loss test, and a dynamic creep test. The results show that the damage process of PAM caused by multiple F-T cycles could be more clearly defined by acoustic emission parameters. In addition, the larger the air void, the smaller its indirect tensile strength and compression strength, and the worse its particle loss resistance and high-temperature stability, which made the adverse effect of F-T cycles more significant. Therefore, the air void of PAM used in seasonal freezing regions is suggested to be less than 21%.


2015 ◽  
Vol 42 (10) ◽  
pp. 797-807
Author(s):  
Pangil Choi ◽  
Sung Il Jeon ◽  
Kyong-Ku Yun

Very-early-strength latex-modified concrete (VES-LMC) was developed for rapid repairs of distresses in concrete bridge decks and pavements, with the emphasis on early-age strength gain so that the repaired bridges and pavements can be opened to traffic within the time frame required in the specifications. However, there are two main concerns in the use of VES-LMC — early-age cracking and poor air void structure. The main objective of this study was to further improve VES-LMC to minimize early-age cracking and improve freeze–thaw durability, which included the use of fine fly ash (FFA) and calcium hydroxide (CH). Laboratory experiments were conducted on VES-LMC materials with cement replaced with FFA as well as CH, and various tests performed. Early-age drying shrinkages of VES-LMC containing both FFA and CH in the amounts evaluated in this study were smaller than that of VES-LMC with no replacements. It is expected that the use of FFA and CH in the range evaluated in this study will reduce the cracking potential of VES-LMC. Overall, the replacement of cement with FFA and CH improved the characteristics of entrained air void system, which will enhance the durability of VES-LMC against freeze–thaw damage. Scanning electron microscope and energy dispersive spectroscopy analysis indicate the primary mechanism of the generation of small sized air voids in concretes containing adequate amount of FFA and CH is the gas formation reaction between citric acid solutions and CH during concrete mixing. It is expected that the inclusion of adequate amounts of FFA and CH in VES-LMC will improve the performance of repaired bridge decks and pavements in terms of reduced cracking and improved freeze-thaw durability.


1988 ◽  
Vol 15 (3) ◽  
pp. 306-314
Author(s):  
Gaston Larose ◽  
Michel Pigeon

The durability of concrete to freeze-thaw cycles is dependent upon the existence of an adequate air-void system. There are very few studies on the air-void system of field concretes. Laboratory tests have proven that the air content measurement on the fresh concrete is not sufficient to judge the aptitude of the air-void system to protect the concrete from frost damage.This paper is a comparison of the air-void systems of field concretes produced in either a conventional plant or a mobile unit the use of which is becoming more and more frequent. The concretes produced in the conventional plant generally had sufficient air-void systems for air contents in the usual range (5–7%). The mobile unit showed that a slightly higher air content (8%) was needed to produce an adequate air-void system. Key words: concrete, mobile concrete-mixer, air-void systems, air-entraining agent, spacing factor, surface area, air content.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 428
Author(s):  
Agnieszka Molendowska ◽  
Jerzy Wawrzeńczyk ◽  
Henryk Kowalczyk

The purpose of the present study was to determine the impact of image quality on the results of air void system parameters determination in air-entrained concretes. The focus was on technical aspects related to the preparation of the scanned image of the concrete surface, which was then subjected to 2D surface analysis. Image processing aimed at separating joined voids and removing various types of defects in aggregate and cement mortar. The specific surface of the voids was determined with the air void equivalent diameter or perimeter as the calculation basis. Applying the Schwartz–Saltykov method, the 3D distribution of the air voids was reconstructed based on 2D measurements. On this basis, the micro-air content A300 was determined. The results of the 2D method were compared with the results of determinations carried out using the linear traverse (1D) method according to EN 480-11. The tests confirm the need to correct the image prior to measurements. Comparative tests showed good agreement between the air void system parameters determined using the 2D analysis and the EN 480-11 chord length counting method.


2007 ◽  
Vol 34 (8) ◽  
pp. 895-901 ◽  
Author(s):  
K K Yun ◽  
D H Kim ◽  
K J Kim

This study focused on the impact of the micro air void system on the chloride permeability of latex-modified concretes with ordinary Portland and very early strength cements. The micro air void system was analyzed with the image analysis method. The results of this study will help field engineers and researchers gain a better understanding of the chloride permeability characteristics of latex-modified concretes. The results show that the latex-modified concretes made with both Portland and very early strength cements have more micro air voids, ranging 50 to 500 µm, than ordinary concretes. These small air voids decrease the spacing factor, which is defined as half the average distance that unstable water must travel to reach an escape boundary. The specific surface ranges from 8 to 27 mm–1 and the spacing factor ranges from 275 to 602 µm for ordinary Portland and very early strength cement concretes without and with latex modification. The specific surface tends to decrease as the spacing factor increases. The spacing factors of concretes tend to decrease with latex modification and with very early strength cement. It seems clear that the use of polymer latex in concrete can significantly lower the value of the air void spacing factor by entraining a large number of micro air voids (below 100 µm in diameter). Key words: latex-modified concrete (LMC), micro air void system, chloride permeability, image analysis.


Sign in / Sign up

Export Citation Format

Share Document