scholarly journals Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila Melanogaster

Author(s):  
Ekaterina N. Proshkina ◽  
Elena Yushkova ◽  
Liubov Koval ◽  
Nadezhda Zemskaya ◽  
Evgeniya Shchegoleva ◽  
...  

Small RNAs are essential for the coordination of many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of mutagenic transposon activity. These processes determine aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in the regulation of lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters were reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system caused a lifespan increase. But changes in radioresistance depended on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allowed us to determine associated molecular mechanisms.

2021 ◽  
Vol 22 (5) ◽  
pp. 2396
Author(s):  
Ekaterina Proshkina ◽  
Elena Yushkova ◽  
Liubov Koval ◽  
Nadezhda Zemskaya ◽  
Evgeniya Shchegoleva ◽  
...  

Small RNAs are essential to coordinate many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of the mutagenic transposon activity. These processes determine the aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in regulating lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters are reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system causes a lifespan increase. But changes in radioresistance depend on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allow us to determine associated molecular mechanisms.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Miyuki Nakamura ◽  
Claudia Köhler ◽  
Lars Hennig

Abstract Background Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. Results Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. Conclusion Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.


2019 ◽  
Vol 10 (1) ◽  
pp. 235-246 ◽  
Author(s):  
Johanna Kurko ◽  
Paul V. Debes ◽  
Andrew H. House ◽  
Tutku Aykanat ◽  
Jaakko Erkinaro ◽  
...  

Despite recent taxonomic diversification in studies linking genotype with phenotype, follow-up studies aimed at understanding the molecular processes of such genotype-phenotype associations remain rare. The age at which an individual reaches sexual maturity is an important fitness trait in many wild species. However, the molecular mechanisms regulating maturation timing processes remain obscure. A recent genome-wide association study in Atlantic salmon (Salmo salar) identified large-effect age-at-maturity-associated chromosomal regions including genes vgll3, akap11 and six6, which have roles in adipogenesis, spermatogenesis and the hypothalamic-pituitary-gonadal (HPG) axis, respectively. Here, we determine expression patterns of these genes during salmon development and their potential molecular partners and pathways. Using Nanostring transcription profiling technology, we show development- and tissue-specific mRNA expression patterns for vgll3, akap11 and six6. Correlated expression levels of vgll3 and akap11, which have adjacent chromosomal location, suggests they may have shared regulation. Further, vgll3 correlating with arhgap6 and yap1, and akap11 with lats1 and yap1 suggests that Vgll3 and Akap11 take part in actin cytoskeleton regulation. Tissue-specific expression results indicate that vgll3 and akap11 paralogs have sex-dependent expression patterns in gonads. Moreover, six6 correlating with slc38a6 and rtn1, and Hippo signaling genes suggests that Six6 could have a broader role in the HPG neuroendrocrine and cell fate commitment regulation, respectively. We conclude that Vgll3, Akap11 and Six6 may influence Atlantic salmon maturation timing via affecting adipogenesis and gametogenesis by regulating cell fate commitment and the HPG axis. These results may help to unravel general molecular mechanisms behind maturation.


Genetics ◽  
2019 ◽  
Vol 213 (4) ◽  
pp. 1545-1563 ◽  
Author(s):  
Ramona Lütkenhaus ◽  
Stefanie Traeger ◽  
Jan Breuer ◽  
Laia Carreté ◽  
Alan Kuo ◽  
...  

Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora. With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.


Author(s):  
Justine Y. Hansen ◽  
Ross D. Markello ◽  
Jacob W. Vogel ◽  
Jakob Seidlitz ◽  
Danilo Bzdok ◽  
...  

Regulation of gene expression drives protein interactions that govern synaptic wiring and neuronal activity. The resulting coordinated activity among neuronal populations supports complex psychological processes, yet how gene expression shapes cognition and emotion remains unknown. Here we directly bridge the microscale and macroscale by mapping gene expression patterns to functional activation patterns across the cortical sheet. Applying unsupervised learning to the Allen Human Brain Atlas and Neurosynth databases, we identify a ventromedial-dorsolateral gradient of gene assemblies that separate affective and cognitive domains. This topographic molecular-psychological signature reflects the hierarchical organization of the neocortex, including systematic variations in cell type, myeloarchitecture, laminar differentiation, and intrinsic network affiliation. In addition, this molecular-psychological signature is related to individual differences in cognitive performance, strengthens over neurodevelopment, and can be replicated in two independent repositories. Collectively, our results reveal spatially covarying transcriptomic and cognitive architectures, highlighting the influence that molecular mechanisms exert on psychological processes.


2021 ◽  
Author(s):  
Jianzhong Wu ◽  
Dequan Sun ◽  
Mingshun Li ◽  
Qian Zhao ◽  
Zhiqiang Zhou ◽  
...  

Abstract A plethora of studies have described heterosis or hybrid vigor; however, a global understanding of its regulation and the transmission of transcriptional levels between parents and hybrid has yet to be attained. To improve our understanding the molecular mechanisms controlling maize heterosis, we used an incomplete diallel cross design consisting of four elite maize inbred lines and six of their hybrids to measure the degree of variation in gene expression between the parents and their hybrids. We found that differentially expressed genes (DEGs) drove diversity of tissue specific heterosis and that heterophile expression was a generally complementary mechanism of gene expression in hybrids. However, the full expression of heterosis was due to the proportion of super dominant gene expression patterns that aggregate the regulatory network of dominant genes in response to adversity, and thus promotes heterosis in hybrids. Our results provide a new understanding and perspective into the regulatory mechanisms that control heterosis and represent an important step towards a more comprehensive explanation of heterosis in maize.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1663
Author(s):  
Thomas Gross ◽  
Annette Becker

Angiosperm flowers are the most complex organs that plants generate, and in their center, the gynoecium forms, assuring sexual reproduction. Gynoecium development requires tight regulation of developmental regulators across time and tissues. How simple on and off regulation of gene expression is achieved in plants was described previously, but molecular mechanisms generating complex expression patterns remain unclear. We use the gynoecium developmental regulator CRABS CLAW (CRC) to study factors contributing to its sophisticated expression pattern. We combine in silico promoter analyses, global TF-DNA interaction screens, and mutant analyses. We find that miRNA action, DNA methylation, and chromatin remodeling do not contribute substantially to CRC regulation. However, 119 TFs, including SEP3, ETT, CAL, FUL, NGA2, and JAG bind to the CRC promoter in yeast. These TFs finetune transcript abundance as homodimers by transcriptional activation. Interestingly, temporal–spatial aspects of expression regulation may be under the control of redundantly acting genes and require higher order complex formation at TF binding sites. Our work shows that endogenous regulation of complex expression pattern requires orchestrated transcription factor action on several conserved promotor sites covering almost 4 kb in length. Our results highlight the utility of comprehensive regulators screens directly linking transcriptional regulators with their targets.


2021 ◽  
Vol 15 ◽  
Author(s):  
Thiago C. Moulin ◽  
Federico Ferro ◽  
Angela Hoyer ◽  
Pierre Cheung ◽  
Michael J. Williams ◽  
...  

More than 320 million people live with depression in the world, a disorder that severely limits psychosocial functioning and diminishes quality of life. The prevalence of major depression is almost two times higher in women than in men. However, the molecular mechanisms of its sex-specific pathophysiology are still poorly understood. Drosophila melanogaster is an established model for neurobiological research of depression-like states, as well as for the study of molecular and genetic sex differences in the brain. Here, we investigated sex-specific effects on forced-climbing locomotion (negative geotaxis) and gene expression of a fly model of depression-like phenotypes induced by levodopa administration, which was previously shown to impair normal food intake, mating frequency, and serotonin concentration. We observed that both males and females show deficits in the forced-climbing paradigm; however, modulated by distinct gene expression patterns after levodopa administration. Our results suggest that Drosophila models can be a valuable tool for identifying the molecular mechanisms underlying the difference of depressive disorder prevalence between men and women.


2020 ◽  
Author(s):  
Bingmiao Gao

Abstract Background: Alpinia oxyphylla is an important edible and medicinal herb, and its dried fruits are widely used in traditional herbal medicine. Flavonoids are one of the main chemical compounds in A. oxyphylla ; however, the genetic and molecular mechanisms of flavonoid biosynthesis are not well understood. Methods: We performed transcriptome analysis in the fruit, root, and leaf tissues of A. oxyphylla to delineate tissue-specific gene expression and metabolic pathways in this medicinal plant. Results: In all, 8.85, 10.10, 8.68, 6.89, and 8.51 Gb clean data were obtained for early-, middle-, and late-stage fruits, leaves, and roots, respectively. Furthermore, 50,401 unigenes were grouped into functional categories based on four databases, namely Nr (47,745 unigenes), Uniprot (49,685 unigenes), KOG (20,153 unigenes), and KEGG (27,285 unigenes). A total of 3,110 differentially expressed genes and five distinct clusters with similar expression patterns were obtained, in which 27 unigenes encoded 13 key enzymes (such as CHS, CHI, F3H, FLS, ANS ) associated with flavonoid biosynthesis. Conclusion: The tissue-specific expression of the genes corresponds to accumulation of flavonoids in these tissues.These results provide insights into the molecular mechanism of flavonoid biosynthesis in A. oxyphylla and application of genetically engineered varieties of A. oxyphylla .


Sign in / Sign up

Export Citation Format

Share Document