Experimental-Numerical Characterization of Ordinary Concrete at the Meso-Scale

Author(s):  
GIANLUCA MAZZUCCO ◽  
Beatrice Pomaro ◽  
Giovanna Xotta ◽  
Enrico Garbin ◽  
Valentina Salomoni ◽  
...  

Modeling the post-peak behaviour of brittle materials like concrete is still a challenge from the point of view of computational mechanics, due to the strong nonlinearities arising in the material behaviour during softening and the complexity of the yield criterion that may describe their deformation capacity in generic triaxial stress states. A numerical model for plain concrete in compression is formulated within the framework of the coupled elasto-plastic-damage theory. The aim is to simulate via the Finite Element (FE) method the stress-strain behaviour of concrete at the meso-scale, where local confinement effects generally characterize the cement paste under the action of the surrounding aggregates. The mechanical characterization of the components are accomplished through a specific experimental campaign. With the subsequent validation study, it is shown that a few calibration parameters give a good prediction of load strength and deformation capacity coming from real uniaxial compression tests.

2003 ◽  
Vol 6 (2) ◽  
pp. 111-120
Author(s):  
Xila Liu ◽  
B. Wen ◽  
J. F. Xu

On the basis of experimental results already reported by others, a new kinematic-hardening and softening model is proposed for plain concrete. The contribution of the paper is that the loading surface here was calibrated at six control points derived from four traditional types of material test. By abandoning the conventional non-associated flow rule, the new proposed model can justify the validity and applicability of the associated flow rule and gives a good prediction on the behaviour of concrete not only in the proportional loading of tension, shear, and compression tests, but also in cyclic loading cases. The model can also predict the softening behaviour of concrete without transferring the loading surface from stress-space to strain-space. Since the associated flow rule can be successfully used, the derived stiffness matrices are symmetrical, thus easing the computation requirement and saving much computer time and cost. Good agreement with a wide range of experimental data has generally been observed.


The results of experimental studies of masonry on the action of dynamic and static (short-term and long-term) loads are presented. The possibility of plastic deformations in the masonry is analyzed for different types of force effects. The falsity of the proposed approach to the estimation of the coefficient of plasticity of masonry, taking into account the ratio of elastic and total deformations of the masonry is noted. The study of the works of Soviet scientists revealed that the masonry under the action of seismic loads refers to brittle materials in the complete absence of plastic properties in it in the process of instantaneous application of forces. For the cases of uniaxial and plane stress states of the masonry, data on the coefficient of plasticity obtained from the experiment are presented. On the basis of experimental studies the influence of the strength of the so-called base materials (brick, mortar) on the bearing capacity of the masonry, regardless of the nature of the application of forces and the type of its stress state, is noted. The analysis of works of prof. S. V. Polyakov makes it possible to draw a conclusion that at the long application of the load, characteristic for the masonry are not plastic deformations, but creep deformations. It is shown that the proposals of some authors on the need to reduce the level of adhesion of the mortar to the brick for the masonry erected in earthquake-prone regions in order to improve its plastic properties are erroneous both from the structural point of view and from the point of view of ensuring the seismic resistance of structures. It is noted that the proposal to assess the plasticity of the masonry of ceramic brick walls and large-format ceramic stone with a voidness of more than 20% is incorrect, and does not meet the work of the masonry of hollow material. On the basis of the analysis of a large number of research works it is concluded about the fragile work of masonry.


2020 ◽  
Vol 4 (2) ◽  
pp. 118-129
Author(s):  
Asti Gumartifa ◽  
◽  
Indah Windra Dwie Agustiani

Gaining English language learning effectively has been discussed all years long. Similarly, Learners have various troubles outcomes in the learning process. Creating a joyful and comfortable situation must be considered by learners. Thus, the implementation of effective learning strategies is certainly necessary for English learners. This descriptive study has two purposes: first, to introduce the classification and characterization of learning strategies such as; memory, cognitive, metacognitive, compensation, social, and affective strategies that are used by learners in the classroom and second, it provides some questionnaires item based on Strategy of Inventory for Language Learning (SILL) version 5.0 that can be used to examine the frequency of students’ learning strategies in the learning process. The summary of this study explains and discusses the researchers’ point of view on the impact of learning outcomes by learning strategies used. Finally, utilizing appropriate learning strategies are certainly beneficial for both teachers and learners to achieve the learning target effectively.


Keyword(s):  

The article discusses a sequence of activities to identify a crime as jointly committed. The requirements to the algorithm of such activities are formulated. Programme-based and targeted methods applied by the authors allowed detecting a range of stages of the algorithm. The first four stages aim at defining mandatory elements of a crime allowing to characterize it as a jointly committed action. The rest of the stages focus on identifying a type of criminal complicity. In the article, each stage is described. It is emphasized that in each stage there is a special objective. At the same time, all these stages, taken together, constitute a separate module of the program of criminal characterization of an action. From the authors’ point of view, algorithms are necessary not only for detection of crimes and their criminal characterization, but also for answering the question on existence of criminal complicity in each case. Also the authors give their opinions on interpretation of criminal complicity as a legal category. In particular, it is emphasized that not all of crimes merely committed with participation of two or more persons should be understood as jointly committed. It is joint participation that makes a crime jointly committed. Various forms of criminal complicity and types of co-offenders are considered in the article as well. In various crimes, criminal complicity manifests itself differently. Therefore the proposed algorithm can be applied only after identification a specific article of the Russian Criminal Code stipulating the responsibility for the crime committed.


2006 ◽  
Author(s):  
Jose M. Lopez ◽  
Jorge E. Corredor ◽  
Julio M. Morell ◽  
Jorge E. Capella ◽  
Fernando Gilbes
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1495
Author(s):  
Dan-Andrei Șerban ◽  
Cosmin Marșavina ◽  
Alexandru Viorel Coșa ◽  
George Belgiu ◽  
Radu Negru

In this article, the yielding and plastic flow of a rapid-prototyped ABS compound was investigated for various plane stress states. The experimental procedures consisted of multiaxial tests performed on an Arcan device on specimens manufactured through photopolymerization. Numerical analyses were employed in order to determine the yield points for each stress state configuration. The results were used for the calibration of the Hosford yield criterion and flow potential. Numerical analyses performed on identical specimen models and test configurations yielded results that are in accordance with the experimental data.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1304
Author(s):  
Francisco Espínola ◽  
Alfonso M. Vidal ◽  
Juan M. Espínola ◽  
Manuel Moya

Wild olive trees have important potential, but, to date, the oil from wild olives has not been studied significantly, especially from an analytical point of view. In Spain, the wild olive tree is called “Acebuche” and its fruit “Acebuchina”. The objective of this work is to optimize the olive oil production process from the Acebuchina cultivar and characterize the oil, which could be marketed as healthy and functional food. A Box–Behnken experimental design with five central points was used, along with the Response Surface Methodology to obtain a mathematical experimental model. The oils from the Acebuchina cultivar meet the requirements for human consumption and have a good balance of fatty acids. In addition, the oils are rich in antioxidants and volatile compounds. The highest extraction yield, 12.0 g oil/100 g paste, was obtained at 90.0 min and the highest yield of phenolic compounds, 870.0 mg/kg, was achieved at 40.0 °C, and 90.0 min; but the maximum content of volatile compounds, 26.9 mg/kg, was obtained at 20 °C and 30.0 min. The oil yield is lower than that of commercial cultivars, but the contents of volatile and phenolic compounds is higher.


2011 ◽  
Vol 70 ◽  
pp. 225-230 ◽  
Author(s):  
Agnieszka Derewonko ◽  
Andrzej Kiczko

The purpose of this paper is to describe the selection process of a rubber-like material model useful for simulation behaviour of an inflatable air cushion under multi-axial stress states. The air cushion is a part of a single segment of a pontoon bridge. The air cushion is constructed of a polyester fabric reinforced membrane such as Hypalon®. From a numerical point of view such a composite type poses a challenge since numerical ill-conditioning can occur due to stiffness differences between rubber and fabric. Due to the analysis of the large deformation dynamic response of the structure, the LS-Dyna code is used. Since LS-Dyna contains more than two-hundred constitutive models the inverse method is used to determine parameters characterizing the material on the base of results of the experimental test.


Morphology ◽  
2021 ◽  
Author(s):  
Rossella Varvara ◽  
Gabriella Lapesa ◽  
Sebastian Padó

AbstractWe present the results of a large-scale corpus-based comparison of two German event nominalization patterns: deverbal nouns in -ung (e.g., die Evaluierung, ‘the evaluation’) and nominal infinitives (e.g., das Evaluieren, ‘the evaluating’). Among the many available event nominalization patterns for German, we selected these two because they are both highly productive and challenging from the semantic point of view. Both patterns are known to keep a tight relation with the event denoted by the base verb, but with different nuances. Our study targets a better understanding of the differences in their semantic import.The key notion of our comparison is that of semantic transparency, and we propose a usage-based characterization of the relationship between derived nominals and their bases. Using methods from distributional semantics, we bring to bear two concrete measures of transparency which highlight different nuances: the first one, cosine, detects nominalizations which are semantically similar to their bases; the second one, distributional inclusion, detects nominalizations which are used in a subset of the contexts of the base verb. We find that only the inclusion measure helps in characterizing the difference between the two types of nominalizations, in relation with the traditionally considered variable of relative frequency (Hay, 2001). Finally, the distributional analysis allows us to frame our comparison in the broader coordinates of the inflection vs. derivation cline.


2019 ◽  
Vol 28 (1) ◽  
pp. 81-88
Author(s):  
Miguel A. González-Montijo ◽  
Hildélix Soto-Toro ◽  
Cristian Rivera-Pérez ◽  
Silvia Esteves-Klomsingh ◽  
Oscar Marcelo Suárez

AbstractHistorically known for being one of the major pollutants in the world, the construction industry, always in constant advancement and development, is currently evolving towards more environmentally friendly technologies and methods. Scientists and engineers seek to develop and implement green alternatives to conventional construction materials. One of these alternatives is to introduce an abundant, hard to recycle, material that could serve as a partial aggregate replacement in masonry bricks or even in a more conventional concrete mixture. The present work studied the use of 3 different types of repurposed plastics with different constitutions and particle size distribution. Accordingly, several brick and concrete mix designs were developed to determine the practicality of using these plastics as partial aggregate replacements. After establishing proper working material ratios for each brick and concrete mix, compression tests as well as tensile tests for the concrete mixes helped determine the structural capacity of both applications. Presented results proved that structural strength can indeed be reached in a masonry unit, using up to a 43% in volume of plastic. Furthermore, a workable structural strength for concrete can be achieved at fourteen days of curing, using up to a 50% aggregate replacement. A straightforward cost assessment for brick production was produced as well as various empirical observations and recommendations concerning the feasibility of each repurposed plastic type examined.


Sign in / Sign up

Export Citation Format

Share Document