scholarly journals Definition of the Ecological Flow (Eflow) Using the Indicators of Hydrological Alteration and IARI as an Operative Tool for Water Management

Author(s):  
Michele Greco ◽  
Francesco Arbia ◽  
Raffaele Giampietro

According to the Water Framework Directive, the Ecological Flow (Eflow) is assumed to be the minimum water discharge required to achieve and maintain the environmental objectives of “good quality status” in a natural water body. It is highly recognized that, the hydrological regime of natural flow plays a primary and crucial role influencing the physical conditions of habitats, which in turn determines the biotic composition and sustainability of aquatic ecosystems. Furthermore, the simple assumption to supply a minimum instream during dry periods is not enough any longer in order to protect the river environment. The recent hydro-ecological understanding states that all flow components might be considered as operational targets for water management, starting from base flows (including low flows) to high and flood regimes in terms of magnitude, frequency, duration, timing and rate of change. Several codes have been developed and applied on different case studies in order to define common tools to be implemented for the Eflow assessment. The study proposes the application of the Indicators of Hydrologic Alteration methodology (IHA by TNC) coupled to the valuation of the Index of Hydrological Regime Alteration (IARI by ISPRA) as an operative tool to define the ecological flow in each monitoring cross section to support the sustainable water resources management and planning. The case study of Agri River, in Basilicata (Southern Italy) is presented. The analyses have been carried out on monthly discharge data derived applying the HEC-Hydrological Modelling System at the basin scale using the daily rain data measurements obtained by the regional rainfall gauge stations and calibrated through the observed inlet water discharge registered at the Lago del Pertusillo reservoir station.

Environments ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 77
Author(s):  
Michele Greco ◽  
Francesco Arbia ◽  
Raffaele Giampietro

It is widely recognized that the hydrological regime of natural flow plays a primary and crucial role in influencing the physical condition of habitats, which, in turn, determines the biotic composition and sustainability of aquatic ecosystems. The current hydro-ecological understanding states that all flow components might be considered as operational targets for water management, starting from base flows (including low flows) to high and flood regimes in terms of magnitude, frequency, duration, timing, and rate of change. Several codes have been developed and applied on different case studies in order to define common tools to be implemented for Eflow assessment. This work deals with the definition of an operative procedure for the evaluation of the Eflow monthly distribution to be adopted in a generic watercourse cross-section for sustainable surface water resource management and exploitation. The methodology proposes the application of the Indicators of Hydrologic Alteration methodology (IHA by TNC) coupled to the valuation of the Index of Hydrological Regime Alteration (IARI by ISPRA) as an operative tool to define the ecological flow in each monitoring cross-section to support sustainable water resource management and planning. The case study of the Agri River in Basilicata (Southern Italy) is presented. The analyses were carried out based on monthly discharge data derived by applying the HEC-Hydrological Modeling System at the basin scale using the daily rain data measurements obtained by the regional rainfall gauge stations and calibrated through the observed inlet water discharge registered at the Lago del Pertusillo reservoir station.


2021 ◽  
Author(s):  
Maria Camila Fernandez Berbeo ◽  
Nicolas Cortes Torres ◽  
Karen Ortega Tenjo ◽  
Martin Perez Pedraza ◽  
Laura Laverde Mesa ◽  
...  

<p>In Colombia around 70% of the electricity generation is from hydropower. It is documented that their infrastructure and operation rules affect the natural regime of flows and sediments with several impacts on aquatic ecosystem functioning mainly on the Magdalena-Cauca river basin, where most of the projects are located. Also, social conflicts have been documented downstream hydropower projects due to water use incompatibilities. Considering that Colombia has a great potential to expand hydropower generation as well as there is a growing demand from other water users, it is necessary to attend the ecological requirements of aquatic ecosystems and to improve the water management in order to avoid irreversible environmental impacts and governance problems.</p><p>In 2018, the Colombian Ministry of Environmental and Sustainable Development (MADS) developed a methodology to consider environmental flows both in the water management decisions and in the environmental impact assessment of new projects with impacts on hydrologic regimen. The opportunity to carry out a validation of its premises aims to research its effectiveness in terms of reduction in hydrologic alterations when environmental flow allocation is decided. </p><p>That is why we have developed a computer model (HeCCA 1.0) which contains the most important methods contemplated in the methodology proposed by MADS. Thus, using river discharge data of 15 different river systems located throughout the entire country, the methodology mentioned has been tested in basins with low anthropic alteration of the hydrological regime. In this test, we cover a range of drainage areas, from 180 to 73000 km<sup>2</sup>, located between 25 and 2993 meters above sea level, and different climatic and geomorphological characteristics. </p><p>The following results have been obtained using the HeCCA tool. For the 15 river systems, the statistical quartiles Q1, Q2 and Q3 for the percentage of use are monthly correspond to 24%, 47% and 100% respectively. The systems belong to different seasonal behaviors depending on the geographical location; nine of them count on a monomodal regimen, which average percentage of use is 61%±8, and the highest percentages of use (located in the Pacific basin) are not found during the wettest months, (77%±29); four of the watersheds are in the Orinoco basin, providing use of water between 61% and 67%. Six systems have bimodal regimen, whose average percentage of use is 49%±32, the two lowest percentages of use (14% and 19%) are found in the biggest bimodal watersheds, with sizes over 1700km<sup>2</sup>, which also have the highest average yields. The highest percentage of use found during the wettest months of the year is 99%, corresponding to the system located at one of the lowest points of the Caribbean basin.  </p><p>Thus, the percentage of available water depends on the watershed size, if it is related to the runoff seasonality along the year in the different catchment areas of the country. This approach provides stakeholders a clear overview of the water availability and management through a useful tool which improves the integral water management for hydrological systems.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 2811-2841 ◽  
Author(s):  
Kenneth D. Mankoff ◽  
Brice Noël ◽  
Xavier Fettweis ◽  
Andreas P. Ahlstrøm ◽  
William Colgan ◽  
...  

Abstract. Greenland runoff, from ice mass loss and increasing rainfall, is increasing. That runoff, as discharge, impacts the physical, chemical, and biological properties of the adjacent fjords. However, where and when the discharge occurs is not readily available in an open database. Here we provide data sets of high-resolution Greenland hydrologic outlets, basins, and streams, as well as a daily 1958 through 2019 time series of Greenland liquid water discharge for each outlet. The data include 24 507 ice marginal outlets and upstream basins and 29 635 land coast outlets and upstream basins, derived from the 100 m ArcticDEM and 150 m BedMachine. At each outlet there are daily discharge data for 22 645 d – ice sheet runoff routed subglacially to ice margin outlets and land runoff routed to coast outlets – from two regional climate models (RCMs; MAR and RACMO). Our sensitivity study of how outlet location changes for every inland cell based on subglacial routing assumptions shows that most inland cells where runoff occurs are not highly sensitive to those routing assumptions, and outflow location does not move far. We compare RCM results with 10 gauges from streams with discharge rates spanning 4 orders of magnitude. Results show that for daily discharge at the individual basin scale the 5 % to 95 % prediction interval between modeled discharge and observations generally falls within plus or minus a factor of 5 (half an order of magnitude, or +500 %/-80 %). Results from this study are available at https://doi.org/10.22008/promice/freshwater (Mankoff, 2020a) and code is available at http://github.com/mankoff/freshwater (last access: 6 November 2020) (Mankoff, 2020b).


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


Water Policy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 768-788
Author(s):  
Nitin Bassi ◽  
Guido Schmidt ◽  
Lucia De Stefano

Abstract The main objective of this research paper is to assess the extent to which the concept of water accounting has been applied for water management at the river basin scale in India. For this, the study first assesses the importance given to the use of water accounting for water management in India's national water policy. It then analyses the evolution of water accounting approaches in India through a systematic review of the past research studies on the theme. Further, it looks at their contribution to decision-making concerning allocation of water resources and resolving conflicts over water sharing. Finally, it identifies the existing gaps in the methodologies for water accounting so far used in India.


Geology ◽  
2021 ◽  
Author(s):  
C.P. Galeazzi ◽  
R.P. Almeida ◽  
A.H. do Prado

Alluvial rivers are the most important agents of sediment transport in continental basins, whose fluvial deposits enclose information related to the time when rivers were active. In order to extract the most information from fluvial deposits in the sedimentary record, it is imperative to quantify the natural variability of channel patterns at the global scale, explore what controls may influence their development, and investigate whether channel pattern information is preserved in the alluvial plains in order to develop tools for recognizing them in the sedimentary record. By surveying 361 reaches of modern alluvial rivers with available water discharge data at a global scale, we present a quantitative channel pattern classification based on sinuosity and channel count index applicable to the recognition in the rock record. A continuum of channel patterns ranging from high-sinuosity single channel to lowsinuosity multichannels is documented, along with the proportion of depositional elements in their alluvial plains and their conditions of occurrence. Preserved barforms in the alluvial plains of these rivers are used to infer and quantify paleoflow directions at the channel-belt scale and result in ranges of paleocurrent circular variance that may lead to channel pattern identification in the rock record. Data from this work indicate that the recognition of channel patterns may be used to predict paleogeographic features such as the scale of drainage basin area and discharge, slope, and annual discharge regimes.


2012 ◽  
Vol 9 (6) ◽  
pp. 7591-7611 ◽  
Author(s):  
A. C. V. Getirana ◽  
C. Peters-Lidard

Abstract. In this study, we evaluate the use of a large radar altimetry dataset as a complementary gauging network capable of providing water discharge in ungauged regions within the Amazon basin. A rating-curve-based methodology is adopted to derive water discharge from altimetric data provided by Envisat at 444 virtual stations (VS). The stage-discharge relations at VS are built based on radar altimetry and outputs from a global flow routing scheme. In order to quantify the impact of modeling uncertainties on rating-curve based discharges, another experiment is performed using simulated discharges derived from a simplified data assimilation procedure. Discharge estimates at 90 VS are evaluated against observations during the curve fitting calibration (2002–2005) and evaluation (2006–2008) periods, resulting in mean relative RMS errors as high as 52% and 12% for experiments without and with assimilation, respectively. Without data assimilation, uncertainty of discharge estimates can be mostly attributed to forcing errors at smaller scales, generating a positive correlation between performance and drainage area. Mean relative errors (RE) of altimetry-based discharges varied from 15% to 92% for large and small drainage areas, respectively. Rating curves produced a mean RE of 54% versus 68% from model outputs. Assimilating discharge data decreases the mean RE from 68% to 12%. These results demonstrate the feasibility of applying the proposed methodology to the regional or global scales. Also, it is shown the potential of satellite altimetry for predicting water discharge in poorly-gauged and ungauged river basins.


Author(s):  
AR Paterson

There is growing global recognition that market-based instruments (MBI), such as environmentally-related taxes, levies and user-charges, are viable tools for facilitating environmental management and, ultimately, sustainable development. These instruments seek to correct market failure to value, or accurately value, environmental goods and services that consequently lead to environmental concerns being accorded insufficient consideration in everyday market activities.  South Africa has introduced various MBI, largely in the form of environmentally-related taxes pertaining to mining, agriculture, electricity supply, water supply, waste water discharge and various products such as fuel and plastic shopping bags. The primary rationale underlying the introduction of these instruments has been revenue generation. Government has, however, acknowledged that MBI have potential to achieve other objectives, namely to mould human behaviour, encourage more efficient resource use and improve actual environmental outcomes. In an effort to facilitate further debate on the issue, the National Treasury recently published a draft policy paper titled A Framework for Considering Market-Based Instruments to Support Environmental Fiscal Reform in South Africa. The Draft Policy Paper reflects a significant shift in fiscal policy and provides four broad tax reform options that could contribute towards meeting both fiscal and environmental objectives, namely: reforming existing environmentally-related taxes and charges in the transport and solid waste sectors; introducing new environmentally-related taxes in the electricity and waste water sectors; reforming legal aspects of non-environmentally-related taxes with perverse environmental incentives and creating incentives to improve environmental outcomes.  This article briefly considers each of the above options set out in the Draft Policy Paper by focusing on the following questions: Why has there been a shift toward the use of MBI to achieve environmental outcomes? To what extent are they used currently in South Africa? What are the options for extending their use in South Africa? What are the prerequisites for their successful implementation?


2015 ◽  
Vol 3 (3) ◽  
pp. 849-908 ◽  
Author(s):  
F. Beaud ◽  
G. E. Flowers ◽  
J. G. Venditti

Abstract. Bedrock erosion by sediment-bearing subglacial water remains little-studied, however the process is thought to contribute to bedrock erosion rates in glaciated landscapes and is implicated in the excavation of tunnel valleys and the incision of inner gorges. We adapt physics-based models of fluvial abrasion to the subglacial environment, assembling the first model designed to quantify bedrock erosion caused by transient subglacial water flow. The subglacial drainage model consists of a one-dimensional network of cavities dynamically coupled to one or several Röthlisberger channels (R-channels). The bedrock erosion model is based on the tools and cover effect, whereby particles entrained by the flow impact exposed bedrock. We explore the dependency of glacial meltwater erosion on the structure and magnitude of water input to the system, the ice geometry and the sediment supply. We find that erosion is not a function of water discharge alone, but also depends on channel size, water pressure and on sediment supply, as in fluvial systems. Modelled glacial meltwater erosion rates are one to two orders of magnitude lower than the expected rates of total glacial erosion required to produce the sediment supply rates we impose, suggesting that glacial meltwater erosion is negligible at the basin scale. Nevertheless, due to the extreme localization of glacial meltwater erosion (at the base of R-channels), this process can carve bedrock (Nye) channels. In fact, our simulations suggest that the incision of bedrock channels several centimetres deep and a few meters wide can occur in a single year. Modelled incision rates indicate that subglacial water flow can gradually carve a tunnel valley and enhance the relief or even initiate the carving of an inner gorge.


2015 ◽  
Vol 747 ◽  
pp. 127-131
Author(s):  
Quintarina Uniaty

The main challenge in the twenty-first century is to work towards a more resilient urban world and sustainable. In the context of a global urban strategy, endurance is the attention to the capacity of urban systems, including the natural environment, the built environment, social and economic elements; to be able to manage change, to learn from a difficult situation and be in a position to rise from urban problems. Globally, the townsfolk face a water crisis within the next ten years, as the impact of climate change in exhaust emissions will affect the quality of air, land and water; which will ultimately reduce the quality of the environment. Sustainability questioned whether certain aspects of the day-to-day activities, and the systems of community life, can be ongoing into the futureonce again from the standpoint of social, economic and environmental. Eco city is a phrase that is often used in ecological issues raised in the concept of sustainable urban planning and green city embodiment of the challenges ahead in sustainable economic development, and the future development of smart green city. The convergence of technology and environmental issues has changed the world economy that offers a green city promising future - a city that appreciates natural heritage and offer all parties involved. This paper will discuss green infrastructure as water management control system in urban development concepts that contribute to build a sustainable green city management.Key words : green infrastructure, water management system.


Sign in / Sign up

Export Citation Format

Share Document