scholarly journals Evaluation of the Binding Kinetics of RHEB with mTORC1 by In-cell and In vitro Assays

Author(s):  
Raef Shams ◽  
Yoshihiro Ito ◽  
Hideyuki Miyatake

The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, RHEB-GTPase. On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and FAT, which allosterically regulates ATP binding in the active site for further phosphorylation. The crucial role of RHEB in regulating growth and survival through mTORC1, makes it a targetable site for anti-cancer therapeutics. However, the binding kinetics of RHEB to mTORC1 is still unknown at the molecular level. Therefore, we studied the kinetics by in vitro and in-cell protein-protein interaction (PPI) assays. For this, we used the split-luciferase system (NanoBiT®) for in-cell studies, and prepared proteins for the in vitro measurements. Consequently, it was shown that RHEB binds to the whole mTOR both in the presence or absence of GTPɣS, with five-fold weaker affinity in the presence of GTPɣS. Also, RHEB bound to the truncated mTOR fragments of N-heat domain (60-167) and M-heat domain (967-1023) in a GTP independent manner. Furthermore, RHEB bound to the truncated kinase domain (2148-2300) with higher affinity also in GTP independently. In conclusion, RHEB binds two different binding sites of mTOR, which probably regulates the kinase activity of mTOR through multiple different molecular mechanisms.

2021 ◽  
Vol 22 (16) ◽  
pp. 8766
Author(s):  
Raef Shams ◽  
Yoshihiro Ito ◽  
Hideyuki Miyatake

The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, Ras homolog enriched in brain (RHEB–GTPase). On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and the focal adhesion targeting (FAT) domain, which allosterically regulates ATP binding in the active site for further phosphorylation. The crucial role of RHEB in regulating growth and survival through mTORC1 makes it a targetable site for anti-cancer therapeutics. However, the binding kinetics of RHEB to mTORC1 is still unknown at the molecular level. Therefore, we studied the kinetics by in vitro and in-cell protein–protein interaction (PPI) assays. To this end, we used the split-luciferase system (NanoBiT®) for in-cell studies and prepared proteins for the in vitro measurements. Consequently, we demonstrated that RHEB binds to the whole mTOR both in the presence or absence of GTPγS, with five-fold weaker affinity in the presence of GTPγS. In addition, RHEB bound to the truncated mTOR fragments of N-heat domain (∆N, aa 60–167) or M-heat domain (∆M, aa 967–1023) with the same affinity in the absence of GTP. The reconstructed binding site of RHEB, ∆N-FAT-M, however, bound to RHEB with the same affinity as ∆N-M, indicating that the FAT domain (∆FAT, aa 1240–1360) is dispensable for RHEB binding. Furthermore, RHEB bound to the truncated kinase domain (∆ATP, aa 2148–2300) with higher affinity than to ∆N-FAT-M. In conclusion, RHEB engages two different binding sites of mTOR, ∆N-FAT-M and ∆ATP, with higher affinity for ∆ATP, which likely regulates the kinase activity of mTOR through multiple different biding modes.


Author(s):  
Olga V. Naidenko ◽  
David Q. Andrews ◽  
Alexis M. Temkin ◽  
Tasha Stoiber ◽  
Uloma Igara Uche ◽  
...  

The development of high-throughput screening methodologies may decrease the need for laboratory animals for toxicity testing. Here, we investigate the potential of assessing immunotoxicity with high-throughput screening data from the U.S. Environmental Protection Agency ToxCast program. As case studies, we analyzed the most common chemicals added to food as well as per- and polyfluoroalkyl substances (PFAS) shown to migrate to food from packaging materials or processing equipment. The antioxidant preservative tert-butylhydroquinone (TBHQ) showed activity both in ToxCast assays and in classical immunological assays, suggesting that it may affect the immune response in people. From the PFAS group, we identified eight substances that can migrate from food contact materials and have ToxCast data. In epidemiological and toxicological studies, PFAS suppress the immune system and decrease the response to vaccination. However, most PFAS show weak or no activity in immune-related ToxCast assays. This lack of concordance between toxicological and high-throughput data for common PFAS indicates the current limitations of in vitro screening for analyzing immunotoxicity. High-throughput in vitro assays show promise for providing mechanistic data relevant for immune risk assessment. In contrast, the lack of immune-specific activity in the existing high-throughput assays cannot validate the safety of a chemical for the immune system.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 431 ◽  
Author(s):  
Rosa Vitale ◽  
Enrico D'Aniello ◽  
Stefania Gorbi ◽  
Andrea Martella ◽  
Cristoforo Silvestri ◽  
...  

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)—a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin—is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiang Ma ◽  
Gang Wang ◽  
Hao Fan ◽  
Zengliang Li ◽  
Wangwang Chen ◽  
...  

AbstractGastric cancer (GC) is a global health problem and further studies of its molecular mechanisms are needed to identify effective therapeutic targets. Although some long noncoding RNAs (lncRNAs) have been found to be involved in the progression of GC, the molecular mechanisms of many GC-related lncRNAs remain unclear. In this study, a series of in vivo and in vitro assays were performed to study the relationship between FAM225A and GC, which showed that FAM225A levels were correlated with poor prognosis in GC. Higher FAM225A expression tended to be correlated with a more profound lymphatic metastasis rate, larger tumor size, and more advanced tumor stage. FAM225A also promoted gastric cell proliferation, invasion, and migration. Further mechanistic investigation showed that FAM225A acted as a miR-326 sponge to upregulate its direct target PADI2 in GC. Overall, our findings indicated that FAM225A promoted GC development and progression via a competitive endogenous RNA network of FAM225A/miR-326/PADI2 in GC, providing insight into possible therapeutic targets and prognosis of GC.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Shauna D. Drumm ◽  
Rebecca Owens ◽  
Jennifer Mitchell ◽  
Orla M. Keane

In Ireland, Staphylococcus aureus is the most common cause of intramammary infection (IMI) in cattle with the bovine-adapted lineages CC151 and CC97 most commonly found. Surface proteins play a major role in establishing and maintaining the infection. A previous study revealed that a strain from the CC151 lineage showed significant decay in genes encoding predicted surface proteins. Twenty-three S. aureus strains, twelve belonging to CC151 and eleven belonging to CC97, isolated from clinical IMI, were sequenced and genes encoding cell wall anchored (CWA) proteins predicted. Analysis showed that a minority of genes encoding putative CWA proteins were intact in the CC151 strains compared to CC97. Of the 26 known CWA proteins in S. aureus, the CC151 strains only encoded 10 intact genes while CC97 encoded on average 18 genes. Also within the CC97 lineage, the repertoire of genes varied depending on individual strains, with strains encoding between 17-20 intact genes. Although CC151 is reported to internalize within bovine host cells, it does so in a fibronectin-binding protein (FnBPA and FnBPB) independent manner. In-vitro assays were performed and results showed that strains from CC151, and surprisingly also CC97, weakly bound bovine fibronectin and that the FnBPs were poorly expressed in both these lineages. Mass spectrometry analysis of cell wall extracts revealed that SdrE and AdsA were the most highly expressed CWA proteins in both lineages. These results demonstrate significant differences between CC151 and CC97 in their repertoire of genes encoding CWA proteins, which may impact immune recognition of these strains and their interactions with host cells.


2021 ◽  
Author(s):  
Marco Niello ◽  
Spyridon Sideromenos ◽  
Ralph Gradisch ◽  
Ronan O'Shea ◽  
Jakob Schwazer ◽  
...  

Abstract α-Pyrrolidinovalerophenone (αPVP) is a psychostimulant and drug of abuse associated with severe intoxications in humans. αPVP exerts long-lasting psychostimulant effects, when compared to the classical dopamine transporter (DAT) inhibitor cocaine. Here, we compared the two enantiomeric forms of αPVP, the R- and the S-αPVP, with cocaine using a combination of in silico, in vitro and in vivo approaches. We found that αPVP enantiomers substantially differ from cocaine in their binding kinetics. The two enantiomers differ from each other in their association rates. However, they show similar slow dissociation rates leading to pseudo-irreversible binding kinetics at DAT. The pseudo-irreversible binding kinetics of αPVP is responsible for the observed non-competitive pharmacology and it correlates with persistent psychostimulant effects in mice. Thus, the slow binding kinetics of αPVP enantiomers profoundly differ from the fast kinetics of cocaine both in vitro and in vivo, suggesting drug-binding kinetics as a potential driver of psychostimulant effects in vivo.


2020 ◽  
Vol 117 (32) ◽  
pp. 19578-19589 ◽  
Author(s):  
Chia-Ming Lee ◽  
Liqiang Zhou ◽  
Jiping Liu ◽  
Jiayu Shi ◽  
Yanan Geng ◽  
...  

The CreER/LoxP system is widely accepted to track neural lineages and study gene functions upon tamoxifen (TAM) administration. We have observed that prenatal TAM treatment caused high rates of delayed delivery and fetal mortality. This substance could produce undesired results, leading to data misinterpretation. Here, we report that administration of TAM during early stages of cortical neurogenesis promoted precocious neural differentiation, while it inhibited neural progenitor cell (NPC) proliferation. The TAM-induced inhibition of NPC proliferation led to deficits in cortical neurogenesis, dendritic morphogenesis, synaptic formation, and cortical patterning in neonatal and postnatal offspring. Mechanistically, by employing single-cell RNA-sequencing (scRNA-seq) analysis combined with in vivo and in vitro assays, we show TAM could exert these drastic effects mainly through dysregulating the Wnt-Dmrta2 signaling pathway. In adult mice, administration of TAM significantly attenuated NPC proliferation in both the subventricular zone and the dentate gyrus. This study revealed the cellular and molecular mechanisms for the adverse effects of TAM on corticogenesis, suggesting that care must be taken when using the TAM-induced CreER/LoxP system for neural lineage tracing and genetic manipulation studies in both embryonic and adult brains.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Tamás Molnár ◽  
Anett Mázló ◽  
Vera Tslaf ◽  
Attila Gábor Szöllősi ◽  
Gabriella Emri ◽  
...  

Abstract Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 797-797 ◽  
Author(s):  
Neil P. Shah ◽  
Francis Y. Lee ◽  
Charles L. Sawyers ◽  
Cem Akin

Abstract The vast majority of systemic mastocytosis cases are associated with a somatic KIT oncoprotein point mutation which substitutes a valine for aspartic acid (D816V), resulting in KIT receptor auto-phosphorylation in a ligand-independent manner. Previous reports have demonstrated that this mutation is inherently imatinib-resistant. Although interferon-alpha has some activity against aggressive systemic mastocytosis, major responses are uncommon, and the drug is associated with significant toxicity. To date, there remains no effective therapy for systemic mastocytosis. We recently described BMS-354825, a novel orally bioavailable SRC/ABL inhibitor that has activity against multiple imatinib-resistant BCR-ABL isoforms in vitro (Shah et al, Science 305:399, 2004). BMS-354825 is presently undergoing evaluation in a phase I clinical trial of imatinib-resistant CML patients, and is showing signs of clinical efficacy. Pharmacokinetic analysis suggests that high nanomolar concentrations of the compound can be safely achieved in humans (see Sawyers et al, Talpaz et al, abstracts submitted for this meeting). To determine if this compound warrants study in other human hematologic conditions, we tested BMS-354825 for activity against human mastocytosis cell lines HMC-1560 and HMC-1560,816, carrying an activating c-kit mutation in juxtamembrane domain (codon 560) with or without a second mutation in tyrosine kinase domain (codon 816), respectively. While 1 um imatinib failed to inhibit the growth of HMC-1560,816 cells carrying the tyrosine kinase domain c-kit mutation, BMS-354825 led to an almost complete growth inhibition at the same concentration, with an IC50 of 0.1–1 uM. In addition, growth of HMC-1560 cells carrying the juxtamembrane c-kit mutation alone was more effectively inhibited by BMS-354825 as compared to imatinib (IC50 of <0.01 vs 0.01–0.1 micromolars respectively). Significantly, detection of phospho-KIT by Western blot analysis was significantly reduced in the presence of BMS-354825 at nanomolar concentrations. An ex vivo assessment of D816V-harboring mast cell sensitivity using a flow cytometric method in systemic mastocytosis bone marrow samples is ongoing. Our findings suggest that studies to evaluate BMS-354825 for the treatment of systemic mastocytosis are warranted. Additionally, the compound may harbor activity in other disease settings that contain activating KIT mutations.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Sebastian Poliak ◽  
Daniel Morales ◽  
Louis-Philippe Croteau ◽  
Dayana Krawchuk ◽  
Elena Palmesino ◽  
...  

During neural circuit assembly, axonal growth cones are exposed to multiple guidance signals at trajectory choice points. While axonal responses to individual guidance cues have been extensively studied, less is known about responses to combination of signals and underlying molecular mechanisms. Here, we studied the convergence of signals directing trajectory selection of spinal motor axons entering the limb. We first demonstrate that Netrin-1 attracts and repels distinct motor axon populations, according to their expression of Netrin receptors. Quantitative in vitro assays demonstrate that motor axons synergistically integrate both attractive or repulsive Netrin-1 signals together with repulsive ephrin signals. Our investigations of the mechanism of ephrin-B2 and Netrin-1 integration demonstrate that the Netrin receptor Unc5c and the ephrin receptor EphB2 can form a complex in a ligand-dependent manner and that Netrin–ephrin synergistic growth cones responses involve the potentiation of Src family kinase signaling, a common effector of both pathways.


Sign in / Sign up

Export Citation Format

Share Document