scholarly journals Using Microcomputers in an Online Introduction to Horticulture Class

Author(s):  
Stephanie Elaine Burnett

Online courses in horticulture increase the breadth of students who may be able to enroll. However, it is challenging to create hands-on learning experiences in online classes that are valuable for student learning. In an online introduction to horticulture class at the University of Maine, we created a hands-on project that is appropriate for students to work on independently at home. Students built an environmental monitoring system using a relatively inexpensive Raspberry Pi microcomputer and sensors for monitoring environmental factors that impact plant growth with a particular focus on monitoring temperature and humidity. They monitored the growing environment in their homes while growing house plants and used the information from their environmental monitoring system to determine whether their home environment was suitable for growing plants. Students were asked to use a pre-existing computer program in the Python language to monitor the environment. They also learned about how components of the code function and changed some simple parts of the code. A majority of students working on this project felt moderately confident, somewhat more confident, or very confident about their ability to use a Raspberry Pi microcomputer in the future. This project provides students with valuable hands-on experience in building environmental monitoring systems and provides them with a deeper understanding of the impact of the environment on plant growth.

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Wen-Tsai Sung ◽  
Sung-Jung Hsiao ◽  
Jing-An Shih

With the development and progress of technology, people’s requirements for living quality are increasingly higher. This study builds an indoor thermal comfort environmental monitoring system through the Internet of Things (IoT) architecture to explore the thermal comfort of people in indoor environments. Then, the applicable indicators are selected from a series of thermal comfort pointers, and the controllable indoor environmental parameters are analyzed and simulated on MATLAB to obtain the impact on the thermal comfort indicators, which can serve as important data to set up the fuzzy rule base. Next, according to the ISO7730 comfort standard and energy saving, three ways to control thermal comfort are proposed. With Arduino UNO as the development substrate, the sensing nodes for the indoor environment are set up, and the wireless sensing network is configured with ESP8266 to transmit the sensing data to the terminal. Monitored by the C# human-machine interface, the controllable load is controlled by wireless remote mode. Finally, the data is stored in the database for follow-up experimentation and analysis. Through actual measurement experiments, the thermal comfort and energy saving effects, under comfort, general, and energy-saving modes, as proposed in this study, are verified to achieve a balance between thermal comfort and energy saving.


2021 ◽  
Vol 245 ◽  
pp. 02015
Author(s):  
Yijie Li

The monitoring items shall be determined in a scientific and reasonable way according to the environmental monitoring standards and specifications, The purpose of environmental monitoring is to reflect the monitoring data of environmental monitoring system in real time, accurately and comprehensively. It provides scientific basis for environmental planning and macro decision-making. It makes the environmental monitoring system feasible and economical. Guided by the technical route of environmental monitoring, combined with the practical principle and priority monitoring principle, the comprehensive planning and reasonable arrangement are made. Environmental protection, scientific research and other purposes. Aiming at the monitoring node and monitoring center of environmental monitoring system, this paper analyzes the important position of environmental management and monitoring plan. This paper discusses the composition and structure of the monitoring system, in order to maximize the role of environmental management, reduce and mitigate the impact of monitoring projects on the ecological environment, and realize the sustainable development and operation of environmental system monitoring.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 248
Author(s):  
Alejandra Duque-Torres ◽  
Carlos Rodriguez-Pabon ◽  
Juan Ruiz-Rosero ◽  
Giselle Zambrano-Gonzalez ◽  
Martha Almanza-Pinzon ◽  
...  

Silk is known as the queen of textiles due to its softness, durability, and luster. This textile is obtained from cocoons spun by larvae known as the silkworm. The combined effect of both temperature and humidity, determines the satisfactory growth of the silkworms and the production of good quality cocoons. For that rea- son, we propose a new prototype for silkworm incubators that monitors environmental conditions, created with Raspberry Pi due to its capabilities, features, and low cost. The prototype monitors the temperature, humidity, and luminosity in a silkworm incubator. The monitoring data are collected and saved on file hosting service, Google Drive, for subsequent analysis. Preliminary tests were gathered using the silkworm incubator of University of Cauca, Colombia.


2012 ◽  
Vol 263-266 ◽  
pp. 959-962
Author(s):  
Han Hua Yang

Monitoring systems can take scientific measurements related to the impact on the environment. In order to attain these first hand measurements from monitored environment, a Reliable Wireless Senor Network Multi Path Routing Scheme (RWMRS) is proposed. Simulation shows that RWMRS scheme can prolong sensor network lifetime by 14.2%, and increase data delivery ratio by 12.1%, which provide better service for environmental monitoring system.


2020 ◽  
Author(s):  
Martin Biermann ◽  
Salim Kanoun ◽  
Trond Davidsen ◽  
Robert Gray

Abstract Aims Since 2017, medical students at the University of Bergen were taught PET/CT “hands-on” by viewing PET/CT cases in native format on diagnostic workstations in the hospital. Due to the COVID-19 pandemic, students were barred access. This prompted us to launch and evaluate a new freeware PET/CT viewing system hosted in the university network. Methods We asked our students to install the multiplatform Fiji viewer with Beth Israel PET/CT plugin (http://petctviewer.org) on their personal computers and connect to a central image database in the university network based on the public domain orthanc server (https://orthanc-server.com). At the end of course, we conducted an anonymous student survey. Results The new system was online within eight days, including regulatory approval. All 76 students (100 %) in the fifth year completed their course work, reading five anonymized PET/CT cases as planned. 41 (53 %) students answered the survey. Fiji was challenging to install with a mean score of 1.8 on a 5-point Likert scale (5 = easy, 1 = difficult). Fiji was more difficult to use (score 3.0) than the previously used diagnostic workstations in the hospital (score 4.1; p < 0.001, paired t-test). Despite the technical challenge, 47 % of students reported having learnt much (scores 4 and 5); only 11 % were negative (scores 1 and 2). 51 % found the PET/CT tasks engaging (scores 4 and 5) while 20 % and 5 % returned scores 2 and 1, respectively. Conclusion Despite the initial technical challenge, “hands-on” learning of PET/CT based on the freeware Fiji/orthanc PET/CT-viewer was associated with a high degree of student satisfaction. We plan to continue running the system to give students permanent access to PET/CT cases in native format regardless of time or location.


2021 ◽  
Vol 11 (5) ◽  
pp. 2347 ◽  
Author(s):  
Jorge Solis ◽  
Christoffer Karlsson ◽  
Simon Johansson ◽  
Kristoffer Richardsson

This research aims to develop an automatic unmanned aerial vehicle (UAV)-based indoor environmental monitoring system for the acquisition of data at a very fine scale to detect rapid changes in environmental features of plants growing in greenhouses. Due to the complexity of the proposed research, in this paper we proposed an off-board distributed control system based on visual input for a micro aerial vehicle (MAV) able to hover, navigate, and fly to a desired target location without considerably affecting the effective flight time. Based on the experimental results, the MAV was able to land on the desired location within a radius of about 10 cm from the center point of the landing pad, with a reduction in the effective flight time of about 28%.


2013 ◽  
Vol 791-793 ◽  
pp. 870-873
Author(s):  
Zhong Hui Yin ◽  
Bin Hui Zhang ◽  
An Ning Zhang ◽  
Zi Long Jing ◽  
Yu Ming Gu

In order to protect the components of monitoring, some measures should be taken when refuge chamber uses outside environmental monitoring system. This paper designs a kind of protective device for outside environmental monitoring system based on related theory analysis and coal mine environment. It can protect monitoring components from gas explosion shock wave. Meantime there is good contact between sensitive element and outside environment to guarantee the normal work of the monitoring system. Finally, this paper builds the model of protective device, and analyses its structural strength.


Sign in / Sign up

Export Citation Format

Share Document